题目列表(包括答案和解析)

 0  137839  137847  137853  137857  137863  137865  137869  137875  137877  137883  137889  137893  137895  137899  137905  137907  137913  137917  137919  137923  137925  137929  137931  137933  137934  137935  137937  137938  137939  137941  137943  137947  137949  137953  137955  137959  137965  137967  137973  137977  137979  137983  137989  137995  137997  138003  138007  138009  138015  138019  138025  138033  447348 

14、解:(1)小球从高处至槽口时,由于只有重力做功;由槽口至槽底端重力、摩擦力都做功。由于对称性,圆槽右半部分摩擦力的功与左半部分摩擦力的功相等。

小球落至槽底部的整个过程中,由动能定理得

解得J

由对称性知小球从槽底到槽左端口摩擦力的功也为J,则小球第一次离槽上升的高度h,由

=4.2m

(2)设小球飞出槽外n次,则由动能定理得

    ∴

即小球最多能飞出槽外6次。

试题详情

13、 解:物体在从A滑到C的过程中,有重力、AB段的阻力、BC段的摩擦力共三个力做功,WG=mgRfBCmg,由于物体在AB段受的阻力是变力,做的功不能直接求。

根据动能定理可知:W=0,所以mgRmgS-WAB=0

WAB=mgRmgS=1×10×0.8-1×10×3/15=6 J

试题详情

12、解:以木块为对象,在下滑全过程中用动能定理:重力做的功为mgLsinα,摩擦力做的功为,支持力不做功。初、末动能均为零。

mgLsinα=0,

试题详情

11、分析与解:由于滑块在斜面上受到摩擦阻力作用,所以物体的机械能将逐渐减少,最后物体在BEC圆弧上作永不停息的往复运动。由于物体只在在BEC圆弧上作永不停息的往复运动之前的运动过程中,

重力所做的功为WG=mg(h-R/2),

摩擦力所做的功为Wf=-μmgscos600,

由动能定理得: mg(h-R/2) -μmgscos600=0-

∴s=280m.

试题详情

16.如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的物体(可以看作质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ.求:

(1)物体做往返运动的整个过程中在AB轨道上通过的总路程;

(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;

(3)为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′应满足什么条件.

试题详情

15.一个圆柱形的竖直的井里存有一定量的水,井的侧面和底部是密闭的.在井中固定地插着一根两端开口的薄壁圆管,管和井共轴,管下端未触及井底,在圆管内有一个不漏气的活塞,它可沿圆管上下滑动.开始时,管内外水面相齐,且活塞恰好接触水面,如图所示. 现用卷扬机通过绳子对活塞施加一个向上的力F,使活塞缓慢向上移动.已知管筒半径 r=0.100 m,井的半径R=2r,水的密度ρ=1.00×103 kg/m3,大气压p0=1.00×105 Pa.求活塞上升H=9.00 m的过程中拉力F所做的功.(井和管在水面以上及水面以下的部分都足够长.不计活塞质量,不计摩擦,重力加速度g=10 m/s2)

试题详情

14.如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m。小球到达槽最低点时速率为10m/s,并继续沿槽壁运动直到从槽右端边缘飞出……,如此反复几次,设摩擦力恒定不变,求:(设小球与槽壁相碰时不损失能量)

(1)小球第一次离槽上升的高度h

(2)小球最多能飞出槽外的次数(取g=10m/s2)。

试题详情

13.如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

试题详情

12.如图所示,斜面倾角为α,长为LAB段光滑,BC段粗糙,且BC=2 AB。质量为m的木块从斜面顶端无初速下滑,到达C端时速度刚好减小到零。求物体和斜面BC段间的动摩擦因数μ

试题详情

11.如图所示,AB与CD为两个对称斜面,其上部都足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200,半径R=2.0m,一个物体在离弧底E高度为h=3.0m处,以初速度V0=4m/s沿斜面运动,若物体与两斜面的动摩擦因数均为μ=0.02,则物体在两斜面上(不包括圆弧部分)一共能走多少路程?(g=10m/s2).

试题详情


同步练习册答案