题目列表(包括答案和解析)

 0  138047  138055  138061  138065  138071  138073  138077  138083  138085  138091  138097  138101  138103  138107  138113  138115  138121  138125  138127  138131  138133  138137  138139  138141  138142  138143  138145  138146  138147  138149  138151  138155  138157  138161  138163  138167  138173  138175  138181  138185  138187  138191  138197  138203  138205  138211  138215  138217  138223  138227  138233  138241  447348 

2、“人船模型”的变形

变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?

分析:由于开始人和气球组成的系统静止在空中,

竖直方向系统所受外力之和为零,即系统竖直方

向系统总动量守恒。得:

mx=My

x+y=L

这与“人船模型”的结果一样。

变形2:如图所示,质量为M的圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?

分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:

mx=My

x+y=L

这又是一个“人船模型”。

m2
 
m1
 
L
 
3、“人船模型”的应用

M
 
①“等效思想”

  如图所示,长为L质量为M的小船停在静水中,船头船尾分别站立质量为m1、m2(m1>m2)的两个人,那么,当两个人互换位置后,船在水平方向移动了多少?

y
 
x
 
分析:将两人和船看成系统,系统水平方向总动量守恒。本题可以理解为是人先后移动,但本题又可等效成质量为的人在质量为的船上走,这样就又变成标准的“人船模型”。

解答:人和船在水平方向移动的距离为x和y,由动量守恒定律可得:

这样就可将原本很复杂的问题变得简化。

②“人船模型”和机械能守恒的结合

m
 
如图所示,质量为M的物体静止于光滑水平面上,其上有一个半径为R的光滑半圆形轨道,现把质量为m的小球自轨道左测最高点静止释放,试计算: 1.摆球运动到最低点时,小球与轨道的速度是多少? 2.轨道的振幅是多大? 

分析:设小球球到达最低点时,小球与轨道的速度分别为v1和v2,根据系统在水平方向动量守恒,得:

又由系统机械能守恒得:

解得:

当小球滑到右侧最高点时,轨道左移的距离最大,即振幅A。 由“人船模型”得:

解得:

即振幅A为:

试题详情

1、“人船模型”

m
 
   质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?

y
 
x
 
分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。

解答:设人在运动过程中,人和船相对于水面的速度分别为和u,则由动量守恒定律得:

mv=Mu

由于人在走动过程中任意时刻人和船的速度和u均满足上述关系,所以运动过程中,人和船平均速度大小也应满足相似的关系,即

m=M

,所以上式可以转化为:

mx=My

又有,x+y=L,得:       

以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。

试题详情

7.一木块置于光滑水平地面上,一子弹以初速v0射入静止的木块,子弹的质量为m,打入木块的深度为d,木块向前移动S后以速度v与子弹一起匀速运动,此过程中转化为内能的能量为

  A.   B.   C.   D.

试题详情

6.一质量为m、两端有挡板的小车静止在光滑水平面上,两挡板间距离为1.1m,在小车正中放一质量为m、长度为0.1m的物块,物块与小车间动摩擦因数μ=0.15。如图示。现给物块一个水平向右的瞬时冲量,使物块获得v0 =6m/s的水平初速度。物块与挡板碰撞时间极短且无能量损失。求:

⑴小车获得的最终速度;

⑵物块相对小车滑行的路程;

⑶物块与两挡板最多碰撞了多少次;

⑷物块最终停在小车上的位置。

试题详情

5.如图所示,在光滑水平面上有一辆质量为M=4.00㎏的平板小车,车上放一质量为m=1.96㎏的木块,木块到平板小车左端的距离L=1.5m,车与木块一起以v=0.4m/s的速度

向右行驶,一颗质量为m0=0.04㎏的子弹以速度v0从右方射入木块并留

在木块内,已知子弹与木块作用时间很短,木块与小车平板间动摩擦因数

μ=0.2,取g=10m/s2。问:若要让木块不从小车上滑出,子弹初速度应

满足什么条件?

试题详情

4.在光滑水平面上静止放置一长木板B,B的质量为M=2㎏同,B右端距竖直墙5m,现有一小物块 A,质

量为m=1㎏,以v0=6m/s的速度从B左端水平地滑上B。如图

所示。A、B间动摩擦因数为μ=0.4,B与墙壁碰撞时间极短,且

碰撞时无能量损失。取g=10m/s2。求:要使物块A最终不脱离B

木板,木板B的最短长度是多少?

试题详情

3.一平直木板C静止在光滑水平面上,今有两小物块A和B分别以2v0和v0的初速度沿同一直线从长木板C两端相向水平地滑上长木板。如图示。设物块A、B与长木板

C间的动摩擦因数为μ,A、B、C三者质量相等。

⑴若A、B两物块不发生碰撞,则由开始滑上C到A、B都静止在

C上为止,B通过的总路程多大?经历的时间多长?

⑵为使A、B两物块不发生碰撞,长木板C至少多长?

试题详情

2.如图示,一质量为M长为l的长方形木块B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,现以地面为参照物,给A和B以大小相等、方向相反的初速度

(如图),使A开始向左运动,B开始向右运动,但最后A刚好没有滑离

B板。以地面为参照系。

⑴若已知A和B的初速度大小为v0,求它们最后速度的大小和方向;

⑵若初速度的大小未知,求小木块A向左运动到最远处(从地面上看)到出发点的距离。

试题详情

1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m,一质量

与木板相同的金属块,以v0=2.00m/s的初速度向右滑上木板A,金属

块与木板间动摩擦因数为μ=0.1,g取10m/s2。求两木板的最后速度。

试题详情

例4. 用轻弹簧相连的质量均为2kg的A、B两物块都以的速度在光滑的水平地面上运动,弹簧处于原长,质量为4kg的物体C静止在前方,如图3所示,B与C碰撞后二者粘在一起运动。求:在以后的运动中,

图3

(1)当弹簧的弹性势能最大时物体A的速度多大?

(2)弹性势能的最大值是多大?

(3)A的速度有可能向左吗?为什么?

解析:(1)当A、B、C三者的速度相等时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,有

解得:

(2)B、C碰撞时B、C组成的系统动量守恒,设碰后瞬间B、C两者速度为,则

设物块A速度为vA时弹簧的弹性势能最大为EP,根据能量守恒

(3)由系统动量守恒得

设A的速度方向向左,,则

则作用后A、B、C动能之和

实际上系统的机械能

根据能量守恒定律,是不可能的。故A不可能向左运动。

[模型要点]

系统动量守恒,如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。能量守恒,动能与势能相互转化。

弹簧两端均有物体:弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相等,弹簧具有最大的弹性势能。

当弹簧恢复原长时,相互关联物体的速度相差最大,弹簧对关联物体的作用力为零。若物体再受阻力时,弹力与阻力相等时,物体速度最大。

[模型演练]

(2006年江苏省前黄高级中学检测题)如图4所示,在光滑水平长直轨道上,A、B两小球之间有一处于原长的轻质弹簧,弹簧右端与B球连接,左端与A球接触但不粘连,已知,开始时A、B均静止。在A球的左边有一质量为的小球C以初速度向右运动,与A球碰撞后粘连在一起,成为一个复合球D,碰撞时间极短,接着逐渐压缩弹簧并使B球运动,经过一段时间后,D球与弹簧分离(弹簧始终处于弹性限度内)。

图4

(1)上述过程中,弹簧的最大弹性势能是多少?

(2)当弹簧恢复原长时B球速度是多大?

(3)若开始时在B球右侧某位置固定一块挡板(图中未画出),在D球与弹簧分离前使B球与挡板发生碰撞,并在碰后立即将挡板撤走,设B球与挡板碰撞时间极短,碰后B球速度大小不变,但方向相反,试求出此后弹簧的弹性势能最大值的范围。

答案:(1)设C与A相碰后速度为v1,三个球共同速度为v2时,弹簧的弹性势能最大,由动量守恒,能量守恒有:

(2)设弹簧恢复原长时,D球速度为,B球速度为

则有

(3)设B球与挡板相碰前瞬间D、B两球速度

与挡板碰后弹性势能最大,D、B两球速度相等,设为

时,最大

时,最小,

所以

试题详情


同步练习册答案