题目列表(包括答案和解析)
5.解方程。如解出两个答案或带有负号要说明其意义。
[例7]将质量为m;的铅球以大小为v0、仰角为θ的初速度抛入一个装着砂子的总质量为M的静止砂车中如图所示。砂车与地面间的摩擦力不计,球与砂车的共同速度等于多少?
解析:把铅球和砂车看成一个系统,系统在整个过程中不受水平方向的外力,则水平方向动量守恒.所以:
m v0cosθ=(M+m)v,所以v= m v0cosθ/(M+m)
答案:m v0cosθ/(M+m)
说明:某方向合外力为零,该方向动量守恒.
[例8]有N个人,每人的质量均为m,站在质量为M的静止在光滑水平地面上的平板车上,他们从平板车的后端以相对于车身为u的水平速度向后跳下,车就朝前方向运动,求:
(1)如果所有的人同时跳下,平板车获得的速度多大?
(2)如果一次只跳一个人,平板车获得的速度多大?
解答:他们同时跳下,则nm(u-v)-Mv=0,∴v=u
他们相继跳下,则0=[M+(n-1)m]v1+m(v1-u);
[M+(n-1)m]v1=[M+(n-2)m]v2+m(v2-u);
[M+(n-2)m] v2=[M+(n-3)m]v3+m(v3-u);…………
[M+m]vn-1=Mvn+m(vn-u)
∴v1=mu/(M+nm);v2-v1=mu/[M+(n-1)m];v3-v2=mu/[M+(n-2)m];……
vn-vn-1=mu/[M+m];
vn=mu[+++………+];即vn>v
[例9]一玩具车携带若干质量为m的弹丸,车和弹丸的总质量为M,在半径为R的光滑轨道上以速率v0做匀速圆周运动,若小车每转一周便沿运动方向相对地面以恒定速度u发射一枚弹丸,求:
(1) 至少发射多少颗弹丸后,小车开始反向运动?
(2) 写出小车反向运动前发射相邻两枚弹丸的时间间隔的表达式.
解析:(1)设发射第一枚弹丸后,玩具车的速度为v1,由切线方向动量守恒得:
(M-m)v1+mu=Mv0 得
第二枚弹丸发射后,则(M-2m)v2+mu=(M-m)v1 得
………
则第n枚弹丸发射后,小车的速度为
小车开始反向运动时,vn≤0,则
(2)发射相邻两枚弹丸的时间间隔就是发射第k(k<n)枚弹丸后小车的周期,即:
[例10]如图所示,一排人站在沿X轴的水平轨道旁.原点O两侧的人序号都记为n(n=1、2、3、……)每人只有一个沙袋,X>0一侧的每个沙袋质量为m=14 kg, x<0一侧的每个沙袋质量为 m/=10 kg.一质量为M=48 kg的小车以某初速度从原点出发向正X方向滑行,不计轨道阻力.当车每经过一人身旁时,此人就把沙袋以水平速度v朝与车速相反的方向沿车面扔到车上,v的大小等手扔袋之前的瞬间车速大小的2n倍(n是此人的序号数).
(1)空车出发后,车上堆积了几个沙袋时车就反向滑行?
(2)车上最终有大小沙袋共多少个?
解答:①小车朝正X方向滑行的过程中,第(n-1)个沙袋扔到车上后的车速为vn-1,第n个沙袋扔到车上后的车速为vn,由动量守恒[M+(n-1)m] vn-1-2nm vn-1=(M+nm)vn
vn= vn-1………①
小车反向运动的条件是vn-1>0, vn<0,即M-nm>0,M-(n+1)m<0,代入数据得
n<M/m=48/14,n>M/m-1=34/14,n应为整数,故n=3,即车上堆积3个沙袋后车就反向滑行
②车自反向滑行直到接近x<一侧第1人所在位置时,车速保持不变,而车的质量为M+3m,若在朝负x方向滑行过程中,第(n-1)个沙袋扔到车上后,车速为vn-1/,第n个沙袋扔到车上后车速为vn/,现取向左方向为正方向,则由动量守恒得:
[M+3m+(n-1)m/] vn-1/-2nm/ vn-1/=(M+3m+nm/)vn/
vn/= vn-1/,车不再向左滑行的条件是vn-1/>0,vn/<0,
即(M+3m-nm/)>0,(M+3m-(n+1)m/)≤0
即n<=9,n≥-1=8,即8≤n<9,
在n=8时,车停止滑行,故最终有11个沙袋。
4.规定正方向,列方程。
3.分析系统初、末状态各质点的速度,明确系统初、末状态的动量。
2.分析系统所受外力、内力,判定系统动量是否守恒。
1.明确研究对象和力的作用时间,即要明确要对哪个系统,对哪个过程应用动量守恒定律。
2、应用动量守恒定律的基本思路
(1)动量守恒定律是说系统内部物体间的相互作用只能改变每个物体的动量,而不能改变系统的总动量,在系统运动变化过程中的任一时刻,单个物体的动量可以不同,但系统的总动量相同。
(2)应用此定律时我们应该选择地面或相对地面静止或匀速直线运动的物体做参照物,不能选择相对地面作加速运动的物体为参照物。
(3)动量是矢量,系统的总动量不变是说系统内各个物体的动量的矢量和不变。等号的含义是说等号的两边不但大小相同,而且方向相同。
[例2]放在光滑水平面上的A、B两小车中间夹了一压缩的轻质弹簧,用两手分别控制小车处于静止状态,下面说法中正确的是
A.两手同时放开后,两车的总动量为零
B.先放开右手,后放开左手,而车的总动量向右
C.先放开左手,后放开右手,两车的总动量向右
D.两手同时放开,同车的总动量守恒;两手放开有先后,两车总动量不守恒
解析:根据动量守恒定律的适用条件,两手同时放开,则两车水平方向不受外力作用,总动量守恒;否则,两车总动量不守恒,若后放开左手,则左手对小车有向右的冲量作用,从而两车的总动量向右;反之,则向左.因而,选项ABD正确.
[例3]在质量为M的小车中挂有一单摆,摆球的质量为m0,小车和单摆以恒定的速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪些情况说法是可能发生的( )
A.小车、木块、摆球的速度都发生变化,分别变为 vl、v2、v3,满足(M+m0)v=Mvl十mv2十m0v3
B.摆球的速度不变,小车和木块的速度变化为vl和v2,满足Mv=Mvl十mv2。
C.摆球的速度不变,小车和木块的速度都变为vl,满足Mv=(M+m)vl
D.小车和摆球的速度都变为vl,木块的速度变为v2,满足(M十m0)v=(M十m0)vl十mv2
分析:小车M与质量为m的静止木块发生碰撞的时间极短,说明在碰撞过程中,悬挂摆球的细线来不及摆开一个明显的角度,因而摆球在水平方向尚未受到力的作用,其水平方向的动量未发生变化,亦即在小车与木块碰撞的过程中,只有小车与木块在水平方向发生相互作用。
解析:在小车M和本块发生碰撞的瞬间,摆球并没有直接与木块发生力的作用,它与小车一起以共同速度V匀速运动时,摆线沿竖直方向,摆线对球的效力和球的重力都与速度方向垂直,因而摆球未受到水平力作用,球的速度不变,可以判定A、D项错误,小车和木块碰撞过程,水平方向无外力作用,系统动量守恒,而题目对碰撞后,小车与木块是否分开或连在一起,没有加以说明,所以两种情况都可能发生,即B、C选项正确。
[例4]如图所示,在光滑水平面上有A、B两小球沿同一条直线向右运动,并发生对心碰撞.设向右为正方向,碰前A、B两球动量分别是pA=10kgm/s,pB=15 kgm/s,碰后动量变化可能是( )
A.ΔpA=5 kg·m/s ΔpB=5 kg·m/s
B.ΔpA =-5 kg·m/s ΔpB = 5 kg·m/s
C.ΔpA =5 kg·m/s ΔpB=-5 kg·in/s·
D.ΔpA =-20kg·m/s ΔpB=20 kg·m/s
解析:A.此结果动量不守恒;B.可能;C.B的动量不可能减少,因为是A碰B;D.要出现ΔpA =-20kg·m/s只有B不动或向左运动才有可能出现这个结果.答案:B
规律方法
1、动量守恒定律的“四性”
在应用动量守恒定律处理问题时,要注意“四性”
①矢量性:动量守恒定律是一个矢量式,,对于一维的运动情况,应选取统一的正方向,凡与正方向相同的动量为正,相反的为负。若方向未知可设与正方向相同而列方程,由解得的结果的正负判定未知量的方向。
②瞬时性:动量是一个状态量,即瞬时值,动量守恒指的是系统任一瞬时的动量恒定,列方程m1vl+m2v2=m1v/l+m2v/2时,等号左侧是作用前各物体的动量和,等号右边是作用后各物体的动量和,不同时刻的动量不能相加。
③相对性:由于动量大小与参照系的选取有关,应用动量守恒定律时,应注意各物体的速度必须是相对于同一惯性参照系的速度,一般以地球为参照系
④普适性:动量守恒定律不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统,不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。
[例5]一辆质量为60kg的小车上有一质量为40kg的人(相对车静止)一起以2m/s的速度向前运动,突然人相对车以 4m/s的速度向车后跳出去,则车速为多大?
下面是几个学生的解答,请指出错在何处.
(1)解析;人跳出车后,车的动量为60v,人的动量为40(4十v)由动量守恒定律: (60+40)×2=60v- 40(4+v)解得: v= 0.4 m/s (没有注意矢量性)
(2)解析:选车的方向为正,人跳出车后,车的动量为60v,人的动量一40×4,由动量守恒定律:
(60+40)×2=60v -40×4,解得v=6m/s (没有注意相对性)
(3)解析:选车的方向为正,人跳出车后的动量为60v,人的动量一40×(4一2)由动量守恒定律得
(60+40)×2=60v -40×(4一2)解得v=14/3m/s (没有注意瞬时性)
(4)解析:选地为参照物,小车运动方向为正,据动量守恒定律,(60+40)×2=60v -40(4-v)解得 v=3.6m/s此法正确.
答案:3.6 m/s
[例6]2002年,美国《科学》杂志评出的《2001 年世界十大科技突破》中,有一项是加拿大萨德伯里 中微子观测站的成果.该站揭示了中微子失踪的原因,即观测到的中微子数目比理论值少是因为部分中微子在运动过程中转化为一个μ子和一个τ子. 在上述研究中有以下说法:①该研究过程中牛顿第二定律依然适用;②该研究中能的转化和守恒定律依然适用;③若发现μ子和中微子的运动方向一致,则τ子的运动方向与中微子的运动方向也可能一致;④若发现μ子和中微子的运动方向相反,则τ子的运动方向与中微子的运动方向也可能相反.其中正确的是:
A.①②, B.①③, C.②③, D. ③④;
解析:牛顿运动定律适用于“低速”“宏观”物体,而动量守恒定律和能量守恒定律是自然界中的普适规律,在中微子转化为μ子和τ子时,动量守恒和能量守恒定律仍然适用,当μ子与中微子的运动方向一致时,τ子的运动方向有可能与中微子的运动方向相同,也有可能与中微子运动方向相反;但μ子运动方向与中微子运动方向相反时,τ子的运动方向与中微子的运动方向一定相同.答案C正确.
3、常见的表达式
①p/=p,其中p/、p分别表示系统的末动量和初动量,表示系统作用前的总动量等于作用后的总动量。
②Δp=0 ,表示系统总动量的增量等于零。
③Δp1=-Δp2,其中Δp1、Δp2分别表示系统内两个物体初、末动量的变化量,表示两个物体组成的系统,各自动量的增量大小相等、方向相反。
其中①的形式最常见,具体来说有以下几种形式
A、m1vl+m2v2=m1v/l+m2v/2,各个动量必须相对同一个参照物,适用于作用前后都运动的两个物体组成的系统。
B、0= m1vl+m2v2,适用于原来静止的两个物体组成的系统。
C、m1vl+m2v2=(m1+m2)v,适用于两物体作用后结合在一起或具有共同的速度。
[例1]由动量定理和牛顿第三定律推出动量守恒定律(以两个物体为例)
解析:设两物体质量分别为m1、m2,作用前后的速度分别为v1、v2与v1/、v2/.在Δt时间内m1、m2所受外力为 Fl、F2,内力:第 1个对第 2个物体作用力为f12,其反作用力为f21.
根据动量定理:
对m1:(Fl十f21)Δt=m1 v1/-m1 v1
对m2:(F2十f12)Δt= m2 v2/一m2 v2
根据牛顿第三定律f12= f21 又由于Fl十F2=0
所以m1 v1/-m1 v1=m2 v2/一m2 v2 整理得:m1 v1+m2 v2 =m1 v1/+m2 v2/
2、 动量守恒定律适用的条件
①系统不受外力或所受合外力为零.
②当内力远大于外力时.
③某一方向不受外力或所受合外力为零,或该方向上内力远大于外力时,该方向的动量守恒.
1、内容:相互作用的物体,如果不受外力或所受外力的合力为零,它们的总动量保持不变,即作用前的总动量与作用后的总动量相等.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com