题目列表(包括答案和解析)
6、关于加速度的概念,以下说法中正确的是:
A.物体运动加速度的方向与初速度方向相同,物体的运动速度将增大
B.物体运动加速度的大小表示了速度变化的大小
C.加速度的正负表示了物体运动的方向
D.做匀变速直线运动的物体速度增大的过程中,它的加速废一定为正值
5、某质点作直线运动,速度随时间的变化的关系式为v =(2t + 4)m/s ,则对这个质点运动描述,正确的是( )
A、初速度为4 m/s B、加速度为2 m/s2
C、在3s末,瞬时速度为10 m/s D、前3s内,位移为30 m
4、关于自由落体运动 ,正确的说法是( )
A、自由落体运动是一种匀变速运动
B、自由落体的快慢与物体质量的大小有关
C、在地球表面上各处,物体自由落体运动的加速度大小相等
D、在地球表面上经度较大处,物体自由落体运动的加速度较大
3、一列火车匀减速进站,停靠一段时间后又匀加速(同方向)出站。在如图所示的四个v-t图象中,正确描述了火车运动情况的是( )
0
2、物体从静止开始作匀加速直线运动,第3 s时间内通过的位移为3m ,则( )
A、物体前3s内通过的位移是6m
B、物体第3s末的速度为3.6m/s
C、物体前3s内平均速度为2m/s
D、物体第3s内的平均速度为3m/s
1、下列关于质点的说法,正确的是( )
A、只有小的物体才能看作质点
B、大的物体也可以看作质点
C、任何物体,在一定条件下都可以看作质点
D、任何物体,在任何条件下都可以看作质点
3.弹性碰撞
题目中出现:“碰撞过程中机械能不损失”.这实际就是弹性碰撞. 设两小球质量分别为m1、m2,碰撞前后速度为v1、v2、v1/、v2/,碰撞过程无机械能损失,求碰后二者的速度.
根据动量守恒 m1 v1+m2 v2=m1 v1/+m2 v2/ ……①
根据机械能守恒 ½m1 v12十½m2v22= ½m1 v1/2十½m2 v2/2 ……②
由①②得v1/= ,v2/=
仔细观察v1/、v2/结果很容易记忆, 当v2=0时v1/= ,v2/=
①当v2=0时;m1=m2 时v1/=0,v2/=v1 这就是我们经常说的交换速度、动量和能量.
②m1>>m2,v/1=v1,v2/=2v1.碰后m1几乎未变,仍按原来速度运动,质量小的物体将以m1的速度的两倍向前运动。
③m1《m2,v/l=一v1,v2/=0. 碰后m1被按原来速率弹回,m2几乎未动。
[例1]试说明完全非弹性碰撞中机械能损失最多.
解析:前面已经说过,碰后二者一起以共同速度运动的碰撞为完全非弹性碰撞.
设两物体质量分别为m1、m2,速度碰前v1、v2,碰后v1/、v2/
由动量守恒:m1v1+m2v2=m1v1/十m2v2/……①
损失机械能:Q=½m1v12+½m2v22-½ m1 v1/2-½ m2 v2/2 ……②
由①得 m1v1+m2v1-m2v1+m2v2=m1v1/十m2v1/-m2v1/+m2v2/
写成(m1+m2)v1-m2(v1-v2)=(m1十m2)v1/-m2(v1/-v2/)
即(m1+m2)(v1 -v1/)= m2[(v1-v2)-(v1/-v2/)]
于是(v1 -v1/)= m2[(v1-v2)-(v1/-v2/)]/ (m1+m2)
同理由①得m1v1+m1v2-m1v2+m2v2=m1v1/十m1v2/-m1v2/+m2v2/
写成(m1+m2)v2+m1(v1-v2)=(m1十m2)v2/+m1(v1/-v2/)
(m1+m2)(v2 -v2/)= m1[(v1/-v2/)-(v1-v2)]
(v2 -v2/)= m1[(v1/-v2/)-(v1-v2)]/ (m1+m2)
代入②得Q=½m1v12+½m2v22-½ m1v1/2-½ m2v2/2=½m1(v12-v1/2)+½m2(v22-v2/2)
=½m1(v1-v1/) (v1+v1/)+½m2(v2-v2/)(v2+v2/)
=½m1(v1+v1/) m2[(v1-v2)-(v1/-v2/)]/(m1+m2)+½m2(v2+v2/)m1[(v1/-v2/)-(v1-v2)]/(m1+m2)
=[½m1 m2/(m1+m2)][ v12-v1v2+v1v1/-v2v1/-v1v1/+v1v2/-v1/2+v1/v2/+v2v1/-v2v2/-v1v2+v22+v1/v2/-v2/2-v1v2/+v2v2/]=[½m1 m2/(m1+m2)][ v12-v1v2-v1v2+v22-v1/2+v1/v2/+v1/v2/-v2/2]= [½m1 m2/(m1+m2)][(v1-v2)2-(v1/-v2/)2]……③由③式可以看出:当v1/= v2/时,损失的机械能最多.
规律方法
[例2]如图所示,一轻质弹簧两端各连接一质量均为m的滑块A和B,两滑块都置于光滑水平面上.今有质量为m/4的子弹以水平速度V射入A中不再穿出,试分析滑块B何时具有最大动能.其值为多少?
解析:对子弹和滑决A根据动量守恒定律 mv/4=5mv//4所以v/=v/5。
当弹簧被压缩后又恢复原长时,B的速度最大,具有的动能也最大,此过程动能与动量都守恒
由①②得:vB=2v/9 所以 B的动能为EkB=2mv2/81
答案:弹簧被压缩又恢复原长时;EkB=2mv2/81
[例3]甲物体以动量P1与静止在光滑水平面上的乙物体对心正碰,碰后乙物体的动量为P2,则P2和P1的关系可能是( )
A.P2<P1; B、P2= P1 C. P2>P1; D.以上答案都有可能
解析:此题隐含着碰撞的多种过程.若甲击穿乙物体或甲、乙两物体粘在一起匀速前进时有P2<P1;若甲乙速度交换时有P2= P1;若甲被弹回时有P2>P1;故四个答案都是可能的.而后三个答案往往漏选
答案:ABCD
[例4]如图所示,在支架的圆孔上放着一个质量为M的木球,一质量为m的子弹以速度v0从下面竖直向上击中子弹并穿出,使木球向上跳起高度为h,求子弹穿过木球后上升的高度。
[解析]把木球和子弹作为一个系统研究,在子弹和木球相互作用时间内,木球和子弹要受到重力作用,显然不符合动量守恒的条件。但由于子弹和木球间的作用力(内力)远大于它们的重力(外力),可以忽略重力作用而认为系统动量守恒。
设子弹刚穿过木球时,子弹的速度为v1,木球的速度为v2,竖直向上为正方向。
对系统,据动量守恒:mv=mv1+Mv2……①
木球获得速度v2后,上升的过程机械能守恒:½Mv22=Mgh……②
两式联立得
子弹射穿木球后的上升过程机械能守恒:½mv12=mgH,将v1代入得子弹上升的最大高度:
[例5]有两块大小不同的圆形薄板(厚度不计)质量分别为M和m,半径分别为R和r,两板之间用一根长为0.4m的轻绳相连结.开始时,两板水平放置并叠合在一起,静止于高度为0.2m处如图(a)所示.然后自由下落到一固定支架C上,支架上有一半径为R/(r<R/<R=的圆孔,圆孔与两薄板中心在圆板中心轴线上,木板与支架发生没有机械能损失的碰撞,碰撞后,两板即分离,直到轻绳绷紧.在轻绳绷紧瞬间,两物体具有共同速度V,如图4一22(b)所示.问:
(l)若M=m,则v值为多大.
(2)若M/m=k,试讨论v的方向与k值间的关系.
解析:M、m与固定支架碰撞前的自由下落,所以v02=2gh v0==2 m/s
碰撞后,M原速返回向上作初达v0的匀减速运动,m作初速为v0向下匀加速运动.
设绳刚要绷直时,M的速度为v1,上升的高度为h1,m的速度为v2,下降的高度为h2,经历时间为t,则:
v1=v0一gt …………① v12=v02一2g h1 ……② v2=v0+gt………③
v22=v02一2g h2 …………④ 又hl+h2=0.4…………⑤
由上五式解得:v2=3 m/s, v1=1m/s
在绳绷紧瞬间,时间极短,重力的冲量忽略不计,则M与m组成的系统动量守恒.设向下为正.则
mv2-Mv1=(M+m)v, 即 v=
(1)当M=m时,v=1m/s (2)当M/m=k时.V=
讨论:k<3时,v>0两板向下运动, k>3时,v<0 两板向上运动, k=3时,v=0两板瞬时静止
[例6]如图所示,一辆质量M=2 kg的平板车左端放有质量m=3 kg的小滑块,滑块与平板车之间的动摩擦因数µ=0.4,开始时平板车和滑块共同以v0=2m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反.平板车足够长,以至滑块不会滑到平板车右端.(取g=10 m/s2)求:
(1)平板车第一次与墙壁碰撞后向左运动的最大距离;
(2)平板车第二次与墙壁碰撞前瞬间的速度v2;
(3)若滑块始终不会滑到平板车右端,平板车至少多长.
解析:平板车第一次与竖直墙壁发生碰撞后速度大小保持不变,但方向与原来相反.在此过程中,由于时间极短,故滑块m的速度与其在车上的位置均未发生变化.此外,由于相对运动,滑块m和平板车间将产生摩擦力,两者均做匀减速运动,由于平板车质量小,故其速度减为0时,滑块m仍具有向右的不为0的速度,此时起,滑块m继续减速,而平板车反向加速一段时间后,滑块M和平板车将达到共同速度,
一起向右运动,与竖直墙壁发生第二次碰撞……
(1)设平板车第一次碰墙壁后,向左移动s,速度减为0.(由于系统总动量向右,平板车速度为0时,滑块还具有向右的速度).
根据动能定理有:一½µmgs1=0一½Mv02
代入数据得:
(2)假如平板车在第二次碰墙前还未和滑块相对静止,那么其速度的大小肯定还是2 m/s,滑块的速度则大于2 m/s,方向均向右,这显然不符合动量守恒定律.所以平板车在第二次碰墙前肯定已和滑块具有共同速度v2.此即平板车碰墙瞬间的速度mv0一Mv0=(M+m)v2,
(3)平板车与墙壁第一次碰撞后到滑块与平板车又达到共同速度v前的过程,可用图(a) (b) (c)表示.图(a)为平板车与墙碰撞后瞬间滑块与平板车的位置,图(b)为平板车到达最左端时两者的位置,图(c)为平板车与滑块再次达到共同速度时两者的位置.在此过程中滑块动能减少等于摩擦力对滑块所做功µmgs/,平板车动能减少等于摩擦力对平板车所做功µmgs//(平板车从B到A再回到B的过程中摩擦力做功为0),其中s' ,s"分别为滑块和平板车的位移.滑块和平板车动能总减少为µmgL,其中L=s/+s//为滑块相对平板车的位移.此后,平板车与墙壁发生多次碰撞,每次情况与此类似,最后停在墙边.设滑块相对平板车总位移为L,则有:½(M+m)v02=µmgL,
L即为平板车的最短长度.
2.一般的碰撞过程中,系统的总动能要有所减少,若总动能的损失很小,可以略去不计,这种碰憧叫做弹性碰撞.其特点是物体在碰撞过程中发生的形变完全恢复,不存在势能的储存,物体系统碰撞前后的总动能相等。若两物体碰后粘合在一起,这种碰撞动能损失最多,叫做完全非弹性碰撞.其特点是发生的形变不恢复,相碰后两物体不分开,且以同一速度运动,机械能损失显著。在碰撞的一般情况下系统动能都不会增加(有其他形式的能转化为机械能的除外,如爆炸过程),这也常是判断一些结论是否成立的依据.
1.碰撞指的是物体间相互作用持续时间很短,而物体间相互作用力很大的现象.
在碰撞现象中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.按碰撞前后物体的动量是否在一条直线上有正碰和斜碰之分,中学物理只研究正碰的情况.
2、洛仑兹力的多解问题
(1)带电粒子电性不确定形成多解.
带电粒子可能带正电荷,也可能带负电荷,在相同的初速度下,正负粒子在磁场中运动轨迹不同,导致双解.
(2)磁场方向不确定形成多解.
若只告知磁感应强度大小,而未说明磁感应强度方向,则应考虑因磁场方向不确定而导致的多解.
(3)临界状态不惟一形成多解.
带电粒子在洛伦兹力作用下飞越有界磁场时,它可能穿过去,也可能偏转1800从入射界面这边反向飞出.另在光滑水平桌面上,一绝缘轻绳拉着一带电小球在匀强磁场中做匀速圆周运动,若绳突然断后,小球可能运动状态也因小球带电电性,绳中有无拉力造成多解.
(4)运动的重复性形成多解.
如带电粒子在部分是电场,部分是磁场空间运动时,往往具有往复性,因而形成多解.
[例8]如图所示,一半径为R的绝缘圆筒中有沿轴线方向的匀强磁场,磁感应强度为B,一质量为m,带电荷量为q的正粒子(不计重力)以速度为v从筒壁的A孔沿半径方向进入筒内,设粒子和筒壁的碰撞无电荷量和能量的损失,那么要使粒子与筒壁连续碰撞,绕筒壁一周后恰好又从A孔射出,问:
(1)磁感应强度B的大小必须满足什么条件?
(2)粒子在筒中运动的时间为多少?
解析:(1)粒子射入圆筒后受洛仑兹力的作用而发生偏转,设第一次与B点碰撞,撞后速度方向又指向O点,设粒子碰撞n-1次后再从A点射出,则其运动轨迹是n段相等的弧长.
设第一段圆弧的圆心为O/,半径为r,则θ=2π/2n=π/n.,由几何关系得,又由r=mv/Bq,联立得:
(2)粒子运动的周期为:T=2πm/qB,将B代入得
弧AB所对的圆心角
粒子由A到B所用的时间 (n=3.4.5……)
故粒子运动的总时间为 (n=3.4.5……)
[例9]S为电子源,它只能在如图(l)所示纸面上的3600范围内发射速率相同,质量为m,电量为e的电子,MN是一块竖直挡板,与S的水平距离OS=L,挡板左侧充满垂直纸面向里的匀强磁场,磁感强度为B.
(l)要使S发射的电子能到达挡板,则发射电子的速度至少多大?
(2)若S发射电子的速度为eBL/m时,挡板被电子击中范围多大?(要求指明S在哪个范围内发射的电子可以击中挡板,并在图中画出能击中挡板距O上下最远的电子的运动轨道)
[解析](l)电子在磁场中所受洛仑较为提供向心力qBV= mV2/r
当r= L/2时,速度v最小, 由①、②可得,V=eBL/2m
(2)若S发射电子速率V/=eBL/m,由eV/B=mV/2/r/ 可得:r/=L
由左手定则知,电子沿SO发射时,刚好到达板上的b点,且OB= r/= L,由SO逆时针转1800的范围内发射的电子均能击中挡板,落点由b→O→a→b/→a,其中沿SO/发射的电并击中挡板上的a点,且aO==L.由上分析可知,挡板能被电子击中的范围由a→b,其高度h=L+L=(十l)L,击中a、b两点的电子轨迹,如图(2)所示.
[例10]M、N、P为很长的平行边界面,M、N与M、P间距分别为L1、L2,其间分别有磁感应强度为B1和B2的匀强磁场区,Ⅰ和Ⅱ磁场方向垂直纸面向里,B1≠B2,有一带正电粒子的电量为q,质量为m,以大小为v的速度垂直边界M及磁场方向射入MN间的磁场区域,讨论粒子初速度v应满足什么条件才可穿过两个磁场区域(不计粒子的重力)。
解析:先讨论粒子穿出B1的条件:
设粒子以某一速度v在磁场B1中运动的圆轨迹刚好与M
相切,此时轨迹半径刚好为L1,由 得:
由此可得使粒子能穿出B1的条件是: 。
再讨论粒子穿出B2条件:
又设粒子以某一的速度穿出了B1后在B2中穿过
时其圆轨迹又刚好与P相切,如图所示,粒子在B1中的运动轨迹所对的圆心角为θ,那么:
,粒子在B2运动的轨迹半径为:
由几何知识得:R-Rsinθ=L2 所以有:
解得:,所以当粒子的速度时就可以穿出B1和B2。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com