题目列表(包括答案和解析)

 0  139120  139128  139134  139138  139144  139146  139150  139156  139158  139164  139170  139174  139176  139180  139186  139188  139194  139198  139200  139204  139206  139210  139212  139214  139215  139216  139218  139219  139220  139222  139224  139228  139230  139234  139236  139240  139246  139248  139254  139258  139260  139264  139270  139276  139278  139284  139288  139290  139296  139300  139306  139314  447348 

6.如图6所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里.P为屏上的一小孔,PCMN垂直.一群质量为m 、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域.粒子入射方向在与磁场B垂直的平面内,且散开在与PC夹角为θ的范围内.则在屏MN上被粒子打中的区域的长度为( )

图6

A.                        B.

C.                  D.

图7

解析:能打到的范围中最远点为2R处,其中R为轨迹半径,R=,最近点为2Rcosθ处,所以总长度L=2R-2Rcosθ=.

答案:D

图8

试题详情

5.如图4所示,在半径为R的圆形区域内有匀强磁场.在边长为2R的正方形区域里也有匀强磁场,两个磁场的磁感应强度大小相同.两个相同的带电粒子以相同的速率分别从MN两点射入匀强磁场.在M点射入的带电粒子,其速度方向指向圆心;在N点射入的带电粒子,速度方向与边界垂直,且N点为正方形边长的中点,则下列说法正确的是( )

图4

A.带电粒子在磁场中飞行的时间可能相同

B.从M点射入的带电粒子可能先飞出磁场

C.从N点射入的带电粒子可能先飞出磁场

D.从N点射入的带电粒子不可能比M点射入的带电粒子先飞出磁场

图5

解析:画轨迹草图如图5所示,容易得出粒子在圆形磁场中的轨迹长度(或轨迹对应的圆心角)不会大于在正方形磁场中的,故A、B、D正确.

答案:ABD

试题详情

4.如图3所示是电视机中显像管的偏转线圈示意图,它由绕在磁环上的两个相同的线圈串联而成,线圈中通有如图3所示方向的电流.当电子束从纸里经磁环中心向纸外射来时(图中用符号“·”表示电子束).它将( )

A.向上偏转           B.向下偏转

C.向右偏转                   D.向左偏转

解析:由右手定则判断在偏转线圈内部存在水平向左的磁场,再由左手定则判定电子束向上偏转.

答案:A

试题详情

3.如图2所示,水平导线中有电流I通过,导线正下方的电子初速度的方向与电流I的方向相同,则电子将( )

A.沿路径a运动,轨迹是圆

B.沿路径a运动,轨迹半径越来越大

C.沿路径a运动,轨迹半径越来越小

D.沿路径b运动,轨迹半径越来越小

解析:由r=知B减小,r越来越大,故电子的径迹是a.

图3

答案:B

试题详情

2.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为RpRα,周期分别为TpTα.则下列选项正确的是( )

A.RpRα=1∶2 TpTα=1∶2

B.RpRα=1∶1 TpTα=1∶1

C.RpRα=1∶1 TpTα=1∶2

D.RpRα=1∶2 TpTα=1∶1

解析:由洛伦兹力提供向心力,则qvBmR=,由此得:=·=·=

由周期T=得:=·==,故A选项正确.

答案:A

图2

试题详情

图1

1.如图1所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t,若该微粒经过p点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.两个微粒所受重力均忽略.新微粒运动的( )

A.轨迹为pb,至屏幕的时间将小于t

B.轨迹为pc,至屏幕的时间将大于t

C.轨迹为pb,至屏幕的时间将等于t

D.轨迹为pa,至屏幕的时间将大于t

解析:碰撞过程其动量守恒,所以碰撞前后动量不变.由r=知,微粒的轨道半径不变,故其轨迹仍为pa,但由于碰后其运动速率比原来小,所以至屏幕时间将大于t.

答案:D

试题详情

11.(2009·辽宁/宁夏高考)如图11所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直.一质量为m、电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场.粒子在磁场中的运动轨迹与y轴交于M点.已知OPlOQ=2l.不计重力.求:

(1)M点与坐标原点O间的距离;

(2)粒子从P点运动到M点所用的时间.

解析:

图12

(1)带电粒子在电场中做类平抛运动,沿y轴负方向上做初速度为零的匀加速运动,设加速度的大小为a;在x轴正方向上做匀速直线运动,设速度为v0;粒子从P点运动到Q点所用的时间为t1,进入磁场时速度方向与x轴正方向夹角为θ,则

a=①

t1=②

v0=③

其中x0=2ly0l.又有tanθ=④

联立②③④式,得θ=30°⑤

因为MOQ点在圆周上,∠MOQ=90°,所以MQ为直径.从图中的几何关系可知,

R=2l

MO=6l

(2)设粒子在磁场中运动的速度为v,从QM点运动的时间为t2,则有

v=⑧

t2=⑨

带电粒子自P点出发到M点所用的时间t

tt1+t2

联立①②③⑤⑥⑧⑨⑩式,并代入数据得

t= ⑪

答案:(1)6l (2)

试题详情

10.如图10所示,Oxyz坐标系的y轴竖直向上,在坐标系所在的空间存在匀强电场和匀强磁场,电场方向与x轴平行.从y轴上的M点(0,H,0)无初速释放一个质量为m、电荷量为q的带负电的小球,它落在xz平面上的N(L,0,b)点(L>0,b>0).若撤去磁场则小球落在xz平面的P点(L,0,0).已知重力加速度为g.

(1)已知匀强磁场方向与某个坐标轴平行,试判断其可能的具体方向;

(2)求电场强度E的大小;

(3)求小球落至N点时的速率v.

解析:(1)用左手定则判断出:磁场方向为-x方向或-y方向.

(2)在未加匀强磁场时,带电小球在电场力和重力作用下落到P点,设运动时间为t,小球自由下落,有Hgt2

小球沿x轴方向只受电场力作用FEqE

小球沿x轴的位移为Lat2

小球沿x轴方向的加速度a

联立求解,得:E

(3)带电小球在匀强磁场和匀强电场共存的区域运动时,洛仑兹力不做功电场力做功为WEqEL

重力做功为WGmgH

设落到N点速度大小为v,根据动能定理有mgH+qELmv2

解得v

答案:(1)-x方向或-y方向 (2)

(3)

图11

试题详情

图8

9.如图8所示,水平向左的匀强电场E=4 V/m,垂直纸面向里的匀强磁场B=2 T,质量m=1 g的带正电的小物块A,从M点沿绝缘粗糙的竖直壁无初速滑下,滑行0.8 m到N点时离开竖直壁做曲线运动,在P点时小物块A瞬时受力平衡,此时速度与水平方向成45°.若PN的高度差为0.8 m,求:

(1)A沿壁下滑过程中摩擦力所做的功;

(2)PN的水平距离.

解析:分清运动过程,应用动能定理列式求解.

(1)物体在N点时,墙对其弹力为零,水平方向EqqvB

所以v==2 m/s,由MN过程据动能定理:

mg+Wfmv2-0,所以Wf=-6×103 J.

图9

(2)设在P点速度为v′其受力如图9所示,所以EqmgqvBEq,得v′=2 m/s.

NP水平距离x,竖直距离y,物体由NP过程电场力和重力做功,由动能定理

mgyEq·xmv2mv2,得x=0.6 m.

答案:(1)-6×103 J (2)0.6 m

图10

试题详情

8.目前,世界上正在研究一种新型发电机叫磁流体发电机.如图7表示了它的原理:将一束等离子体喷射入磁场,在场中有两块金属板AB,这时金属板上就会聚集电荷,产生电压.如果射入的等离子体速度均为v,两金属板的板长为L,板间距离为d,板平面的面积为S,匀强磁场的磁感应强度为B,方向垂直于速度方向,负载电阻为R,电离气体充满两板间的空间.当发电机稳定发电时,电流表示数为I.那么板间电离气体的电阻率为( )

A.(-R)                   B.(-R)

C.(-R)                   D.(-R)

解析:当粒子受的电场力与洛伦兹力平衡时,两板电压即为电动势,即qvBq,得UBdv.

I=,rρ

由此可解得ρ=(-R),故选项A正确.

答案:A

试题详情


同步练习册答案