题目列表(包括答案和解析)
5.一本书放在水平桌面上,下列说法中正确的是 [ ]
A.书的重力就是书对桌面的压力
B.书对桌面的压力与桌面对书的支持力是一对平衡力
C.书的重力与桌面对书的支持力是一对平衡力
D.书对桌面的压力性质属于弹力
4.关于合力与分力,以下说法中正确的是 [ ]
A.两个力的合力,至少大于一个分力 B.两个力的合力,可能小于一个分力
C.两个力的合力,不可能小于两个分力D.两个力的合力,一定大于两个分力
3.关于摩擦力,下面几种说法中正确的是 [ ]
A.摩擦力的方向总与物体运动的方向相反
B.滑动摩擦力总是与物体的重力成正比
C.静摩擦力随着拉力的增大而增大,并有一个最大值
D.摩擦力一定是阻力
2.下列各种力的名称,根据力的性质命名的是 [ ]
A.弹力 B.拉力 C.动力 D.浮力
1.关于力,下述说法中正确的是 [ ]
A.因为力是物体对物体的作用,所以,只有相互接触的物体间才有力的作用
B.力不一定总有受力物体.比如,一个人用力向外推掌,用了很大力,但没有受力物体
C.因为重力的方向总是竖直向下的,所以,重力一定和地面垂直
D.一个物体,不论是静止还是运动,也不论怎样运动,受到的重力都一样
11、如图10-1所示,劲度系数为 K的轻质弹簧一端与墙固定,另一端与倾角为θ的斜面体小车连接,小车置于光滑水平面上。在小车上叠放一个物体,已知小车质量为 M,物体质量为m,小车位于O点时,整个系统处于平衡状态。现将小车从O点拉到B点,令OB=b,无初速释放后,小车即在水平面B、C间来回运动,而物体和小车之间始终没有相对运动。求: (1)小车运动到B点时的加速度大小和物体所受到的摩擦力大小。 (2)b的大小必须满足什么条件,才能使小车和物体一起运动过程中,在某一位置时,物体和小车之间的摩擦力为零。
分析与解: (1)所求的加速度a和摩擦力f是小车在B点时的瞬时值。取M、m和弹簧组成的系统为研究对象,由牛顿第二定律:kb=(M+m)a 所以a=kb/(M+m)。
取m为研究对象,在沿斜面方向有:f-mgsinθ=macosθ
所以,f=mgsinθ+mcosθ=m(gsinθ+cosθ)
(2)当物体和小车之间的摩擦力的零时,小车的加速度变为a',小车距O点距离为b',取m为研究对象,有:mgsinθ=ma'cosθ 取M、m和弹簧组成的系统为研究对象,有:kb'=(M+m)a' 以上述两式联立解得:b'=(M+m)gtgθ
说明:在求解加速度时用整体法,在分析求解m受到的摩擦力时用隔离法。整体法和隔离法两者交互运用是解题中常用的方法,希读者认真掌握。
12、如图11-1所示,一列横波t时刻的图象用实线表示,又经△t=0.2s时的图象用虚线表示。已知波长为2m,则以下说法正确的是:( )
A、若波向右传播,则最大周期是2s。
B、若波向左传播,则最大周期是2s。
C、若波向左传播,则最小波速是9m/s。
D、若波速是19m/s,则传播方向向左。
分析与解: 若向右传播,则传播0.2m的波数为0.2m/2m=0.1, 则,△t=(n+0.1)T (n=0、1、2、3……) 所以T=△t/(n+0.1)=0.2/(n+0.1) 当n=0时,周期有最大值Tmax=2s,所以A正确。
若向左传播,则在0.2s内传播距离为(2-0.2)m=1.8m,传过波数为1.8m/2m=0.9, 则,△t=(n+0.9)T (n=0、1、2、3……) 所以T=△t/(n+0.9)=0.2/(n+0.9) 当n=0时,周期有最大值Tmax≈0.22S,所以B错。
又:T=λ/V,所以V=λ/T=λ/[0.2/(n+0.9)]=2(n+0.9)/0.2=10(n+0.9) 当n=0时,波速最小值为Vmin=9m/s,所以C正确。 当n=1时 V=19m/s,所以D正确。
故本题应选A、C、D。
说明:解决波动问题要注意:由于波动的周期性(每隔一个周期T或每隔一个波长λ)和波的传播方向的双向性,往往出现多解,故要防止用特解来代替通解造成解答的不完整。
10、如图9-1所示,质量为M=3kg的木板静止在光滑水平面上,板的右端放一质量为m=1kg的小铁块,现给铁块一个水平向左速度V0=4m/s,铁块在木板上滑行,与固定在木板左端的水平轻弹簧相碰后又返回,且恰好停在木板右端,求铁块与弹簧相碰过程中,弹性势能的最大值EP。
分析与解:在铁块运动的整个过程中,系统的动量守恒,因此弹簧压缩最大时和铁块停在木板右端时系统的共同速度(铁块与木板的速度相同)可用动量守恒定律求出。在铁块相对于木板往返运动过程中,系统总机械能损失等于摩擦力和相对运动距离的乘积,可利用能量关系分别对两过程列方程解出结果。
设弹簧压缩量最大时和铁块停在木板右端时系统速度分别为V和V',由动量守恒得:mV0=(M+m)V=(M+m)V' 所以,V=V’=mV0/(M+m)=1X4/(3+1)=1m/s 铁块刚在木板上运动时系统总动能为:EK=mV02=0.5X1X16=8J 弹簧压缩量最大时和铁块最后停在木板右端时,系统总动能都为: EK'=(M+m)V2=0.5X(3+1)X1=2J 铁块在相对于木板往返运过程中,克服摩擦力f所做的功为: Wf=f2L=EK-EK'=8-2=6J 铁块由开始运动到弹簧压缩量最大的过程中,系统机械能损失为:fs=3J 由能量关系得出弹性势能最大值为:EP=EK-EK'-fs=8-2-3=3J
说明:由于木板在水平光滑平面上运动,整个系统动量守恒,题中所求的是弹簧的最大弹性势能,解题时必须要用到能量关系。在解本题时要注意两个方面:1.是要知道只有当铁块和木板相对静止时(即速度相同时),弹簧的弹性势能才最大;弹性势能量大时,铁块和木板的速度都不为零;铁块停在木板右端时,系统速度也不为零。 2.是系统机械能损失并不等于铁块克服摩擦力所做的功,而等于铁块克服摩擦力所做的功和摩擦力对木板所做功的差值,故在计算中用摩擦力乘上铁块在木板上相对滑动的距离。
9、如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A点由静止开始向B点运动,到达B点时外力F突然撤去,滑块随即冲上半径为 R=0.4米的1/4光滑圆弧面小车,小车立即沿光滑水平面PQ运动。设:开始时平面AB与圆弧CD相切,A、B、C三点在同一水平线上,令AB连线为X轴,且AB=d=0.64m,滑块在AB面上运动时,其动量随位移的变化关系为P=1.6kgm/s,小车质量M=3.6kg,不计能量损失。求:(1)滑块受水平推力F为多大? (2)滑块通过C点时,圆弧C点受到压力为多大? (3)滑块到达D点时,小车速度为多大? (4)滑块能否第二次通过C点? 若滑块第二次通过C点时,小车与滑块的速度分别为多大? (5)滑块从D点滑出再返回D点这一过程中,小车移动距离为多少? (g取10m/s2)
分析与解:(1)由P=1.6=mv,代入x=0.64m,可得滑块到B点速度为: VB=1.6/m=1.6=3.2m/s A→B,由动能定理得:FS=mVB2 所以 F=mVB2/(2S)=0.4X3.22/(2X0.64)=3.2N (2)滑块滑上C立即做圆周运动,由牛顿第二定律得: N-mg=mVC2/R 而VC=VB 则 N=mg+mVC2/R=0.4X10+0.4X3.22/0.4=14.2N (3)滑块由C→D的过程中,滑块和小车组成系统在水平方向动量守恒,由于滑块始终紧贴着小车一起运动,在D点时,滑块和小车具有相同的水平速度VDX 。由动量守恒定律得:mVC=(M+m)VDX 所以 VDX=mVC/(M+m)=0.4X3.2/(3.6+0.4)=0.32m/s (4)滑块一定能再次通过C点。因为滑块到达D点时,除与小车有相同的水平速度VDX外,还具有竖直向上的分速度VDY,因此滑块以后将脱离小车相对于小车做竖直上抛运动(相对地面做斜上抛运动)。因题中说明无能量损失,可知滑块在离车后一段时间内,始终处于D点的正上方(因两者在水平方向不受力作用,水平方向分运动为匀速运动,具有相同水平速度), 所以滑块返回时必重新落在小车的D点上,然后再圆孤下滑,最后由C点离开小车,做平抛运动落到地面上。由机械能守恒定律得: mVC2=mgR+(M+m)VDX2+mVDY2 所以 以滑块、小车为系统,以滑块滑上C点为初态,滑块第二次滑到C点时为末态,此过程中系统水平方向动量守恒,系统机械能守恒(注意:对滑块来说,此过程中弹力与速度不垂直,弹力做功,机械能不守恒)得: mVC=mVC'+MV 即mVC2=mVC'2+MV2 上式中VC'、V分别为滑块返回C点时,滑块与小车的速度, V=2mVC/(M+m)=2X0.4X3.2/(3.6+0.4)=0.64m/s VC'=(m-M)VC/(m+M)=(0.4-3.6)X3.2/(0.4+3.6)=-2.56m/s(与V反向) (5)滑块离D到返回D这一过程中,小车做匀速直线运动,前进距离为: △S=VDX2VDY/g=0.32X2X1.1/10=0.07m
7、某人造地球卫星的高度是地球半径的15倍。试估算此卫星的线速度。已知地球半径R=6400km,g=10m/s2。
分析与解:人造地球卫星绕地球做圆周运动的向心力由地球对卫星的引力提供,设地球与卫星的质量分别为M、m,则:= [1] 又根据近地卫星受到的引力可近似地认为等于其重力,即:mg= [2] [1]、[2]两式消去GM解得:V===2.0X103 m/s
说明:n越大(即卫星越高),卫星的线速度越小。若n=0,即近地卫星,则卫星的线速度为V0==7.9X103m/s,这就是第一宇宙速度,即环绕速度。
8、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的内径大得多。在圆管中有两个直径与细管内径相同的小球(可视为质点)。A球的质量为m1,B球的质量为m2。它们沿环形圆管顺时针运动,经过最低点时的速度都为V0。设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与V0应满足的关系式是 。
分析与解:如图7-1所示,A球运动到最低点时速度为V0,A球受到向下重力mg和细管向上弹力N1的作用,其合力提供向心力。那么,N1-m1g=m1 [1] 这时B球位于最高点,速度为V1,B球受向下重力m2g和细管弹力N2作用。球作用于细管的力是N1、N2的反作用力,要求两球作用于细管的合力为零,即要求N2与N1等值反向,N1=N2 [2], 且N2方向一定向下,对B球:N2+m2g=m2 [3]
B球由最高点运动到最低点时速度为V0,此过程中机械能守恒: 即m2V12+m2g2R=m2V02 [4] 由[1][2][3][4]式消去N1、N2和V1后得到m1、m2、R与V0满足的关系式是:
(m1-m2)+(m1+5m2)g=0 [5]
说明:(1)本题不要求出某一物理量,而是要求根据对两球运动的分析和受力的分析,在建立[1]-[4]式的基础上得到m1、m2、R与V0所满足的关系式[5]。(2)由题意要求两球对圆管的合力为零知,N2一定与N1方向相反,这一点是列出[3]式的关键。且由[5]式知两球质量关系m1<m2。
6、如图6-1所示,A、B两物体的质量分别是m1和m2,其接触面光滑,与水平面的夹角为θ,若A、B与水平地面的动摩擦系数都是μ,用水平力F推A,使A、B一起加速运动,求:(1)A、B间的相互作用力 (2)为维持A、B间不发生相对滑动,力F的取值范围。
分析与解:A在F的作用下,有沿A、B间斜面向上运动的趋势,据题意,为维持A、B间不发生相对滑动时,A处刚脱离水平面,即A不受到水平面的支持力,此时A与水平面间的摩擦力为零。 本题在求A、B间相互作用力N和B受到的摩擦力f2时,运用隔离法;而求A、B组成的系统的加速度时,运用整体法。 (1)对A受力分析如图6-2(a)所示,据题意有:N1=0,f1=0 因此有:Ncosθ=m1g [1] , F-Nsinθ=m1a [2] 由[1]式得A、B间相互作用力为:N=m1g/cosθ (2)对B受力分析如图6-2(b)所示,则:N2=m2g+Ncosθ [3] , f2=μN2 [4] 将[1]、[3]代入[4]式得: f2=μ(m1+ m2)g 取A、B组成的系统,有:F-f2=(m1+ m2)a [5] 由[1]、[2]、[5]式解得:F=m1g(m1+ m2)(tgθ-μ)/m2 故A、B不发生相对滑动时F的取值范围为:0<F≤m1g(m1+ m2)(tgθ-μ)/m2
想一想:当A、B与水平地面间光滑时,且又m1=m2=m时,则F的取值范围是多少?( 0<F≤2mgtgθ=。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com