题目列表(包括答案和解析)

 0  172598  172606  172612  172616  172622  172624  172628  172634  172636  172642  172648  172652  172654  172658  172664  172666  172672  172676  172678  172682  172684  172688  172690  172692  172693  172694  172696  172697  172698  172700  172702  172706  172708  172712  172714  172718  172724  172726  172732  172736  172738  172742  172748  172754  172756  172762  172766  172768  172774  172778  172784  172792  447348 

在本章知识应用的过程中,初学者常犯的错误主要表现在:对要领理解不深刻,如加速度的大小与速度大小、速度变化量的大小,加速度的方向与速度的方向之间常混淆不清;对位移、速度、加速度这些矢量运算过程中正、负号的使用出现混乱:在未对物体运动(特别是物体做减速运动)过程进行准确分析的情况下,盲目地套公式进行运算等。

例1 汽车以10 m/s的速度行使5分钟后突然刹车。如刹车过程是做匀变速运动,加速度大小为5m/s2 ,则刹车后3秒钟内汽车所走的距离是多少?

[错解]因为汽车刹车过程做匀减速直线运动,初速v0=10 m/s加速度

[错解原因]出现以上错误有两个原因。一是对刹车的物理过程不清楚。当速度减为零时,车与地面无相对运动,滑动摩擦力变为零。二是对位移公式的物理意义理解不深刻。位移S对应时间t,这段时间内a必须存在,而当a不存在时,求出的位移则无意义。由于第一点的不理解以致认为a永远地存在;由于第二点的不理解以致有思考a什么时候不存在。

[分析解答]依题意画出运动草图1-1。设经时间t1速度减为零。据匀减速直线运动速度公式v1=v0-at则有0=10-5t解得t=2S由于汽车在2S时

[评析]物理问题不是简单的计算问题,当得出结果后,应思考是否与

s=-30m的结果,这个结果是与实际不相符的。应思考在运用规律中是否出现与实际不符的问题。

本题还可以利用图像求解。汽车刹车过程是匀减速直线运动。据v0,a

由此可知三角形v0Ot所包围的面积即为刹车3s内的位移。

例2 气球以10m/s的速度匀速竖直上升,从气球上掉下一个物体,经17s到达地面。求物体刚脱离气球时气球的高度。(g=10m/s2)

[错解]物体从气球上掉下来到达地面这段距离即为物体脱离气球时,气球的高度。

所以物体刚脱离气球时,气球的高度为 1445m。

[错解原因]由于学生对惯性定律理解不深刻,导致对题中的隐含条件即物体离开气球时具有向上的初速度视而不见。误认为v0=0。实际物体随气球匀速上升时,物体具有向上10m/s的速度当物体离开气球时,由于惯性物体继续向上运动一段距离,在重力作用下做匀变速直线运动。

[分析解答]本题既可以用整体处理的方法也可以分段处理。

方法一:可将物体的运动过程视为匀变速直线运动。根据题意画出运动草图如图1-3所示。规定向下方向为正,则V0=-10m/sg=10m/s2据h=v0t+

∴物体刚掉下时离地1275m。

方法二:如图1-3将物体的运动过程分为A→B→C和C→D两段来处理。A→B→C为竖直上抛运动,C→D为竖直下抛运动。

在A→B→C段,据竖直上抛规律可知此阶段运动时间为

由题意知tCD=17-2=15(s)

=1275(m)

方法三:根据题意作出物体脱离气球到落地这段时间的V-t图(如图1-4所示)。

其中△v0otB的面积为A→B的位移

△tBtcvc的面积大小为B→C的位移

梯形tCtDvDvC的面积大小为C→D的位移即物体离开气球时距地的高度。

则tB=1s根据竖直上抛的规律tc=2s tBtD=17-1=16(s)

在△tBvDtD中则可求vD=160(m/s)

[评析]在解决运动学的问题过程中,画运动草图很重要。解题前应根据题意画出运动草图。草图上一定要有规定的正方向,否则矢量方程解决问题就会出现错误。如分析解答方法一中不规定正方向,就会出现

例3 经检测汽车A的制动性能:以标准速度20m/s在平直公路上行使时,制动后40s停下来。现A在平直公路上以20m/s的速度行使发现前方180m处有一货车B以6m/s的速度同向匀速行使,司机立即制动,能否发生撞车事故?

[错解] 设汽车A制动后40s的位移为s1,货车B在这段时间内的位

S2=v2t=6×40=240(m)

两车位移差为400-240=160(m)

因为两车刚开始相距180m>160m

所以两车不相撞。

[错解原因]这是典型的追击问题。关键是要弄清不相撞的条件。汽车A与货车B同速时,两车位移差和初始时刻两车距离关系是判断两车能否相撞的依据。当两车同速时,两车位移差大于初始时刻的距离时,两车相撞;小于、等于时,则不相撞。而错解中的判据条件错误导致错解。

[分析解答]如图1-5汽车A以v0=20m/s的初速做匀减速直线运动经40s停下来。据加速度公式可求出a=-0.5m/s2当A车减为与B车同速时是A车逼近B车距离最多的时刻,这时若能超过B车则相撞,反之则不能相撞。

(m)

△S=364-168=196>180(m)

所以两车相撞。

[评析]分析追击问题应把两物体的位置关系图画好。如图1.5,通过此图理解物理情景。本题也可以借图像帮助理解图1-6中。阴影区是A车比B车多通过的最多距离,这段距离若能大于两车初始时刻的距离则两车必相撞。小于、等于则不相撞。从图中也可以看出A车速度成为零时,不是A车比B车多走距离最多的时刻,因此不能作为临界条件分析。

例4 如图1-7所示,一人站在岸上,利用绳和定滑轮,拉船靠岸,在某一时刻绳的速度为v,绳AO段与水平面夹角为θ,不计摩擦和轮的质量,则此时小船的水平速度多大?

[错解]将绳的速度按图1-8所示的方法分解,则v1即为船的水平速度v1=v·cosθ。

[错解原因]上述错误的原因是没有弄清船的运动情况。实际上船是在做平动,每一时刻船上各点都有相同的水平速度。而AO绳上各点运动比较复杂,既有平动又有转动。以连接船上的A点来说,它有沿绳的平动分速度v,也有与v垂直的法向速度vn,即转动分速度,A点的合速度vA即为两个分速度的合。vA=v/cosθ

[分析解答]方法一:小船的运动为平动,而绳AO上各点的运动是平动+转动。以连接船上的A点为研究对象,如图1-9,A的平动速度为v,转动速度为vn,合速度vA即与船的平动速度相同。则由图可以看出vA=v/cosθ。

[评析]方法二:我们可以把绳子和滑轮看作理想机械。人对绳子做的功等于绳子对船做的功。我们所研究的绳子都是轻质绳,绳上的张力相等。对于绳上的C点来说即时功率P人绳=F·v。对于船上A点来说P绳船=FvA·cos

解答的方法一,也许学生不易理解绳上各点的运动。从能量角度来讲也可以得到同样的结论。

还应指出的是要有实际力、实际加速度、实际速度才可分解。

例5  一条宽为L的河流,河水流速为v1,船在静水中的  速度为v2,要使船划到对岸时航程最短,船头应指向什么方向?最短航程是多少?

[错解]要使航程最短船头应指向与岸垂直的方向。最短航程为L。

[错解原因]上而错解的原因是对运动的合成不理解。船在水中航行并不是船头指向什么方向就向什么方向运动。它的运动方向是船在静水中的速度方向与水流方向共同决定的。要使航程最短应是合速度垂直于岸。

[分析解答]题中没有给出v1与v2的大小关系,所以应考虑以下可能情况。

此种情况下航程最短为L。

②当v2<v1时,如图1-11船头斜向上游,与岸夹角为θ时,用三角形法则分析当它的方向与圆相切时,航程最短,设为S,由几何关系可知此时v2⊥v(合速度)(θ≠0)

③当v2=v1时,如图1-12,θ越小航程越短。(θ≠ 0)

[评析]航程最短与时间最短是两个不同概念。航程最短是指合位移最小。时间最短是指用最大垂直河岸的速度过河的时间。解决这类问题的依据就是合运动与分运动的等时性及两个方向运动的独立性。

例6 有一个物体在h高处,以水平初速度v0抛出,落地时的速度为v1,竖直分速度为vy,下列公式能用来计算该物体在空中运动时间的是(  )

故B正确。

[错解原因]形成以上错误有两个原因。第一是模型与规律配套。Vt=v0+gt是匀加速直线运动的速度公式,而平抛运动是曲线运动,不能用此公式。第二不理解运动的合成与分解。平抛运动可分解为水平的匀速直线运动和竖直的自由落体运动。每个分运动都对应自身运动规律。

[分析解答]本题的正确选项为A,C,D。

平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体,分运动与合运动时间具有等时性。

水平方向:x=v0t①

据式①-⑤知A,C,D正确。

[评析]选择运动公式首先要判断物体的运动性质。运动性质确定了,模型确定了,运动规律就确定了。判断运动性要根据合外力和初速度的关系。当合外力与初速度共线时,物体做直线运动,当合外力与v不共线时,物体做曲线运动。当合外力与v0垂直且恒定时,物体做平抛运动。当物体总与v垂直时,物体做圆运动。

例7  一个物体从塔顶落下,在到达地面前最后一秒内通过的位移为整个位移的9/25,求塔高(g=10m/s2)。

[错解]因为物体从塔顶落下,做自由落体运动。

解得H=13.9m

[错解原因]物体从塔顶落下时,对整个过程而言是初速为零的匀加速直线运动。而对部分最后一秒内物体的运动则不能视为初速为零的匀加速直线运动。因为最后一秒内的初始时刻物体具有一定的初速,由于对整体和部分的关系不清,导致物理规律用错,形成错解。

[分析解得]根据题意画出运动草图,如图1-13所示。物体从塔顶落到地面所经历时间为t,通过的位移为H物体在t-1秒内的位移为h。因为V0=0

由①②③解得H=125m

[评析]解决匀变速直线运动问题时,对整体与局部,局部与局部过程相互关系的分析,是解题的重要环节。如本题初位置记为A位置,t-1秒时记为B位置,落地点为C位置(如图1-13所示)。不难看出既可以把BC段看成整体过程AC与局部过程AB的差值,也可以把BC段看做是物体以初速度VB和加速度g向下做为时1s的匀加速运动,而vB可看成是局部过程AB的末速度。这样分析就会发现其中一些隐含条件。使得求解方便。

另外值得一提的是匀变速直线运动的问题有很多题通过v-t图求解既直观又方便简洁。如本题依题意可以做出v-t图(如图1-14),由题意

例8 正在与Rm高空水平匀速飞行的飞机,每隔1s释放一个小球,先后共释放5个,不计空气阻力,则(  )

A.这5个小球在空中排成一条直线

B.这5个小球在空中处在同一抛物线上

C.在空中,第1,2两个球间的距离保持不变

D.相邻两球的落地间距相等

[错解]因为5个球先后释放,所以5个球在空中处在同一抛物线上,又因为小球都做自由落体运动,所以C选项正确。

[错解原因]形成错解的原因是只注意到球做平抛运动,但没有理解小球做平抛的时间不同,所以它们在不同的抛物线上,小球在竖直方向做自由落体运动,但是先后不同。所以C选项不对。

[分析解答]释放的每个小球都做平抛运动。水平方向的速度与飞机的飞行速度相等,在水平方向做匀速直线运动,在竖直方向上做自由落体运动,只是开始的时刻不同。飞机和小球的位置如图1-15可以看出A,D选项正确。

[评析]解这类题时,决不应是想当然,而应依据物理规律画出运动草图,这样会有很大的帮助。如本题水平方向每隔1s过位移一样,投小球水平间距相同,抓住特点画出各个球的轨迹图,这样答案就呈现出来了。

例9  物块从光滑曲面上的P点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,如图1-16所示,再把物块放到P点自由滑下则(  )

A.物块将仍落在Q点

B.物块将会落在Q点的左边

C.物块将会落在Q点的右边

D.物块有可能落不到地面上

[错解]因为皮带轮转动起来以后,物块在皮带轮上的时间长,相对皮带位移弯大,摩擦力做功将比皮带轮不转动时多,物块在皮带右端的速度将小于皮带轮不动时,所以落在Q点左边,应选B选项。

[错解原因]学生的错误主要是对物体的运动过程中的受力分析不准确。实质上当皮带轮逆时针转动时,无论物块以多大的速度滑下来,传送带给物块施的摩擦力都是相同的,且与传送带静止时一样,由运动学公式知位移相同。从传送带上做平抛运动的初速相同。水平位移相同,落点相同。

[分析解答]物块从斜面滑下来,当传送带静止时,在水平方向受到与运动方向相反的摩擦力,物块将做匀减速运动。离开传送带时做平抛运动。当传送带逆时针转动时物体相对传送带都是向前运动,受到滑动摩擦力方向与运动方向相反。  物体做匀减速运动,离开传送带时,也做平抛运动,且与传送带不动时的抛出速度相同,故落在Q点,所以A选项正确。

[评析]若此题中传送带顺时针转动,物块相对传送带的运动情况就应讨论了。

(1)当v0=vB物块滑到底的速度等于传送带速度,没有摩擦力作用,物块做匀速运动,离开传送带做平抛的初速度比传送带不动时的大,水平位移也大,所以落在Q点的右边。

(2)当v0>vB物块滑到底速度小于传送带的速度,有两种情况,一是物块始终做匀加速运动,二是物块先做加速运动,当物块速度等于传送带的速度时,物体做匀速运动。这两种情况落点都在Q点右边。

(3)v0<vB当物块滑上传送带的速度大于传送带的速度,有两种情况,一是物块一直减速,二是先减速后匀速。第一种落在Q点,第二种落在Q点的右边。

试题详情

本章中所涉及到的基本方法有:利用运动合成与分解的方法研究平抛运动的问题,这是将复杂的问题利用分解的方法将其划分为若干个简单问题的基本方法;利用物理量间的函数关系图像研究物体的运动规律的方法,这也是形象、直观的研究物理问题的一种基本方法。这些具体方法中所包含的思想,在整个物理学研究问题中都是经常用到的。因此,在学习过程中要特别加以体会。

试题详情

 本章内容包括位移、路程、时间、时刻、平均速度、即时速度、线速度、角速度、加速度等基本概念,以及匀变速直线运动的规律、平抛运动的规律及圆周运动的规律。在学习中要注意准确理解位移、速度、加速度等基本概念,特别应该理解位移与距离(路程)、速度与速率、时间与时刻、加速度与速度及速度变化量的不同。 

试题详情

7.一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则(  )

A、过程I中钢珠的动量的改变量等于重力的冲量

B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小

C、I、Ⅱ两个过程中合外力的总冲量等于零

D、过程Ⅱ中钢珠的动量的改变量等于零

[答案]AC

[解析]根据动量定理可知,在过程I中,钢珠从静止状态自由下落。不计空气阻力,小球所受的合外力即为重力,因此钢珠的动量的改变量等于重力的 冲量,选项A正确;过程I中阻力的冲量的大小等于过程I中重力的冲量的大小与过程Ⅱ中重力的冲量的大小之和,显然B选项不对;在I、Ⅱ两个过程中,钢珠动量的改变量各不为零。且它们大小相等、方向相反,但从整体看,钢珠动量的改变量为零,故合外力的总冲量等于零,故C选项正确,D选项错误。因此,本题的正确选项为A、C

[猜题理由]动量这一矢量作为动量定理、动量守恒定律的联系和枢纽本来就是经典力学的重要组成部分,也是高考每年必考之内容,但是前些年主要在计算题中考查,会不会转移到选择题中去呢,我们拭目以待.

试题详情

6.如图所示。弹簧振子在振动过程中,振子经a、b两点的速度相同,若它从a到b历时0.2s,从b再回到a的最短时间为0.4s,则该振子的振动频率为 (   )

A、1Hz;  B、1.25Hz;  C、2Hz;  D、2.5Hz。

[答案]B

[解析]振子经a、b两点速度相同,根据弹簧振子的运动特点,不难判断a、b两点对平衡位置(O点)一定是对称的,振子由b经o到a所用的时间也是0.2s,由于“从b再回到a的最短时间是0.4,说明振子运动到b后是第一次回到a点,且ob不是振子的最大位移。设图中的c、d为最大位移处,则振子从b经c到b历时0.2s,同理,振子从a经d到a,也历时0.2s,故该振子的周期T=0.8S,根据周期和频率互为倒数的关系,不难确定该振子的振动频率为1.25Hz。

[猜题理由]近年来对于机械波的考查特别多,但是对于振动的考查相对少些,而且振动的周期、频率之间的关系是重点,同时也是机械波的基础。

试题详情

5.一个带活塞的气缸内盛有一定量的气体.若此气体的温度随其内能的增大而升高,则(  )

A.将热量传给气体,其温度必升高   

B.压缩气体,其温度必升高

C.压缩气体,同时气体向外界放热,其温度必不变

D.压缩气体,同时将热量传给气体,其温度必升高

[答案]D

[解析]做功和热传递是改变物体内能的两种方式.根据热力学第一定律ΔU=Q+W,气体被压缩又吸热,内能必增加,温度必升高,D项正确.选项A,知道Q 而不知W情况,B知道W 而不知Q的情况,无法判断ΔU.C中,知道W情况又知Q情况,但不知数量关系,故也无法判断ΔU,所以A、B、C错.

[猜题理由] 理想气体结合热力学第一定律来考查是高考命题专家特别亲睐的。

试题详情

4.如图所示,虚线abc代表电场中三个等势面,相邻等势面之间的电势差相同.实线为一带正电的质点仅在电场力作用下通过该区域的运动轨迹,PQ是这条轨迹上的两点,由此可知(  )

 

A.三个等势面中,c等势面电势高 

B.带电质点通过P点时电势能较大

C.带电质点通过Q点时动能较大 

D.带电质点通过P点时加速度较大

[答案]BCD

[解析]等差等势面越密集,该区域场强越大,故EP>EQ,带电质点通过P点时加速度较大,D正确;假设质点由P运动到Q,根据①运动轨迹的切线方向为速度方向;②电场线与等势面相垂直;③正电荷所受的电场力与场强同向;④做曲线运动的质点,其所受的合外力指向运动轨迹的凹面,从而确定质点经过P时的速度和电场力方向,如图所示.根据正电荷所受电场力的方向可知,电场线由等势面指向等势面c,故φa>φb>φc,A错误;电场力与瞬时速度成锐角,故由P运动到Q电场力对质点做正功,质点的电势能减小,动能增加,BC正确;

试题详情

3.在做单分子油膜法测量分子直径的实验中有一下一些数据:一滴油酸酒精溶液含质量为m的纯油酸,滴在液面上扩散后形成的最大面积为S.已知纯油酸的摩尔质量为M、密度为ρ,阿伏加德罗常数为NA.下列表达式正确的有(  )

A.油酸分子的直径      B.油酸分子的直径

C.油酸所含的分子数    D.油酸所含的分子数

[答案]AD

[解析]油酸分子的直径等于油膜的厚度,质量为m的油酸的体积,而,因此,A正确,B错误;油酸的分子数等于摩尔数与阿伏加德罗常数的乘积,因此有,D正确,C错误。

[猜题理由]在阿伏加德罗常数相关的微观计算中,注意阿伏加德罗常数是计算的桥梁,将宏观世界与微观世界联系起来,近年来关于热学部分的考查考的气体方面的考点较多,而关于微粒的计算考查的相对少些,本题以单分子油膜法测量分子直径的实验为载体,考查分子直径的计算、与阿伏加德罗常数相关的分子数的计算等知识点。是一道融合实验的选择题,是高考的新动向。

试题详情

2. 下列史实正确的是(   )

A.卢瑟福预言了原子的核式结构,并用α粒子散射实验验证了预言

B.卢瑟福用α粒子轰击氮核,打出了质子,并由此发现了电子

C.库仑发现了库仑定律,并测定了静电力常量

D.玻尔提出了自己的原子结构假说,并能成功解释氢原子发光规律

[答案]CD

[解析]卢瑟福是通过α粒子散射实验现象才提出原子的核式结构的,A错;电子是汤姆生发现的,B错;库仑通过实验发现了库仑定律,并用库仑扭秤测定了静电力常量,C正确;玻尔提出的原子结构理论只能解释氢原子发光规律,D正确。

[猜题理由]现在的新课标更关注学生科学素养的渗透,随着全国各省市课改的推进,物理学史的考查是必不可少的。本题集中考查了物理学史,α粒子散射实验、库仑定律、玻尔理论的局限性等。

试题详情

1.如图所示,与锌板相连的验电器的铝箔原来是张开的,现在让弧光灯发出的光经一狭缝后照射到锌板,发现在锌板上形成明暗相间的条纹,同时与锌板相连的验电器的铝箔张角变大,以上实验事实说明(   )

  

A.光具有波粒二象性

B.验电器的铝箔原来带负电

C.锌板上亮条纹是平行等宽度的

D.若改用激光器发出的红光照射锌板,观察到验电器的铝箔张角则一定会变得更大

[答案]A

[解析]当弧光灯发出的紫外线经过狭缝照在锌板上,锌板上形成明暗相间的条纹,发生衍射现象,中心条纹宽度最宽,说明光有波动性;同时与锌板相连的验电器的铝箔张角变大,发生了光电效应,电子飞出,锌板原带正电,说明光有粒子性。所以A正确,B、C错误。

[猜题理由]本题来源于课本,但是不简单考查课本知识,而是将课本的知识进行整合,达到了高考的要求,是现在高考的思想:来源于教材而高于教材。属于课本知识的改变和再现。

试题详情


同步练习册答案