题目列表(包括答案和解析)

 0  196738  196746  196752  196756  196762  196764  196768  196774  196776  196782  196788  196792  196794  196798  196804  196806  196812  196816  196818  196822  196824  196828  196830  196832  196833  196834  196836  196837  196838  196840  196842  196846  196848  196852  196854  196858  196864  196866  196872  196876  196878  196882  196888  196894  196896  196902  196906  196908  196914  196918  196924  196932  447348 

(三)酶的特点及功能

酶是由活细胞产生的、具有催化活性和高度专一性的特殊蛋白质。酶被称为生物催化剂。生物体内错综复杂的代谢反应必须具有酶才能按一定规律有条不紊地进行。酶缺陷或酶活性被抑制都会引起疾病。例如,人体缺乏酪氨酸酶会引起白化病。许多中毒性疾病,如有机磷中毒、氰化物中毒、重金属的中毒等,都是由于某些酶的活性被抑制所引起的。

1.酶促反应的特点

酶是生物催化剂,因而它既有与一般催化剂相同的性质,也有与一般催化剂不同的特点。酶和一般催化剂的共同点是:①酶在催化反应加快进行时,在反应前后酶本身没有数量和性质上的改变,因而很少量的酶就可催化大量的物质发生反应。②酶只能催化热力学上允许进行的反应,而不能使本来不能进行的反应发生。③酶只能使反应加快达到平衡,而不能改变达到平衡时反应物和产物的浓度。因此,酶既能加快正反应进行,也能加快逆反应进行。酶促反应究竟朝哪个方向进行,取决于反应物和产物的浓度。酶与一般的催化剂相比又有其特点,最突出的是它的高效性和专一性。

2.酶的化学本质

通过对酶的性质、组成和结构等等方面的研究证实,酶是蛋白质(也有RNA)。蛋白质分为简单蛋白质和结合蛋白质两大类。酶按照化学组成也可分为单纯酶和结合酶两大类。脲酶、胃蛋白酶和核糖核酸酶等一般水解酶都属于简单蛋白质,这些酶只由氨基酸组成,此外不含其他成分。转氨酶、碳酸酐酶、乳酸脱氢酶及其他氧化还原酶等均属于结合蛋白质。这些酶除了蛋白质组分外,还含有对热稳定的非蛋白的小分子物质,前者称酶蛋白,后者称辅因子。酶蛋白与辅因子单独存在时,均无催化活力,只有二者结合成完整的分子时,才具有活力。此完整的酶分子称为全酶(全酶=酶蛋白十辅因子)。有的酶的辅因子是金属离子,有的是小分子有机化合物。通常将这些小分子有机化合物称为辅酶或辅基。辅酶或辅基并没有本质的差别,只不过是它们与蛋白质部分结合的牢固程度不同而已。通常把与酶蛋白结合比较松的,用透析法可除去的小分子有机物称为辅酶;反之为辅基。在酶的催化过程中,辅酶或辅基的作用是作为电子、原子或某些基团的载体参与反应并促进整个催化过程。金属在酶分子中或作为酶活性部位的组成成分,或帮助形成酶活性所必需的构象。一种辅酶常可与多种不同的酶蛋白结合而组成具有不同专一性的全酶。可见决定酶催化专一性的是酶的蛋白质部分。

3.酶的活性中心和必需基团

酶作为蛋白质,其分子比大多数底物要大得多,因此在反应过程中酶与底物的接触只限于酶分子的少数基团或较小的部位。因分子中虽然有许多基团,但并不是所有的基团都与酶的活性有关,其中有些基团若经化学修饰(如氧化、还原、酰化、烷化等)使其改变,则酶的活性丧失,这些基团就称为必需基团。常见的必需基团有Ser的羟基,His的咪唑基,Cys的巯基,Asp、Glu的侧链羧基等。

活性中心(或称活性部位)是指酶分子中直接和底物结合,并和酶催化作用直接有关的部位。对于单纯酶来说,它是由一些氨基酸残基的侧链基团组成的。对于结合酶来说,辅酶或辅基上的某一部分结构往往也是活性部位的组成部分。

酶的活性中心的必需基团可分为两种:一种是与作用物结合的必需基团,称为结合基团,它决定酶的专一性;另一种是促进作用物发生化学变化的基团,称为催化基团,它决定酶的催化能力。但也有些必需基团同时具有这两种作用。另外还有些必需基团位于酶活性中心以外的部位,但仍是维持酶催化作用所必需的,这种称为酶活性中心以外的必需基团。由此可见,酶除了活性中心以外,其他部分并不是可有可无的。活性中心必需基团的作用,一方面使底物与酶依一定构型而结合成为复合物,这样有利于相互影响和作用;另一方面影响底物分子某些键的稳定性,键被打断或形成新的键,从而催化其转变。

某些酶,特别是一些与消化作用有关的酶,在最初合成和分泌时,没有催化活性,这种没有活性的酶的前体称为“酶原”。酶原在一定条件下经适当的物质作用可转变为有活性的酶。酶原转变成酶的过程称为酶原的激活。这个过程实质上是酶活性部位形成或暴露的过程。

4,酶的催化机理

一个反应体系中,任何反应物分子都有进行化学反应的可能,但并非全部反应物分子都进行反应。因为在反应体系中各个反应物分子所含的能量高低不同,只有那些含能量达到或超过一定数值(此能量数值称为此反应的能阈)的分子,才能发生反应,这些分子称为活化分子,使一般分子变为活化分子所需的能量(即分子激活态与基态之间的能量差)称为活化能。在一个反应体系中,活化分子越多,反应就越快,设法增加活化分子的数目就能加快反应的速度。降低活化能,能使本来不够活化水平的分子也成为活化分子,从而增加了活化分子的数目。活化能愈降低,则活化分子的数目就愈多。酶的催化作用就是降低化学反应的活化能,如下图图所示。由于在催化反应中只需较少的能量就可使反应物进入“激活态”,所以同非催化反应相比,活化分子的数量大大增加,从而加快了反应速度。

非催化过程与催化过程自由能的变化

目前认为酶降低活化能的原因在于酶参与了反应,即它先与底物结合形成不稳定的中间产物,然后使中间产物再分解,释放出酶及生成反应产物。此过程可用下式表示:

这样,把原来无酶参加的一步反应S===P(能阈较高),变成能阈较低的两步反应(S+E===ES和ES===E+P)。反应的总结果是相同的,但由于反应的过程不同,活化能就大大降低了。这就是目前所公认的中间产物学说。关于酶与底物如何结合形成中间产物,又如何完成催化作用,目前有锁钥学说和诱导契合学说。

5.影响酶作用的因素

影响酶促反应的因素有酶的浓度、底物浓度、pH值、温度、抑制剂和激活剂等。酶促反应速度指的是反应初速度,此时反应速度与酶的浓度成正比关系,避免反应产物以及其他因素的影响。研究某一因素对酶促反应速度的影响时,在保持其他因素不变的情况下,单独改变研究的因素。

(1)酶的浓度;当底物浓度大大超过酶的浓度,酶的浓度与反应速度呈正比关系(见右图所示)。

(2)底物浓度:在酶浓度不变的情况下,底物浓度对反应速度影响的作图呈现矩形双曲线(见右图所示)。当底物浓度很低时,反应速度随底物浓度的增加而急骤加快,两者呈正比关系。随着底物浓度的升高,反应速度的增加幅度不断下降。如果继续加大底物浓度,其反应速度不再增加,说明酶已被底物所饱和。所有酶都有饱和现象,只是达到饱和时所需的底物浓度各不相同。

(3)温度:在一定的温度范围内一般化学反应速度均随温度升高而加快,酶促反应也服从这个规律。酶是蛋白质,其本身因温度升高而达到一定高度时会变性,破坏其活性中心的结构,从而减低反应速度或完全失去其催化活性。在某一温度时,酶促反应的速度最大,此时的温度称为酶作用的最适温度。

(4)pH:酶分子中含有许多极性基团,在不同的pH环境中,这些基团的解离状态不同,所带电荷的种类和数量也不尽相同,酶的活性中心往往只处于某一解离状态时最有利于同底物结合。酶催化活性最大时的pH值称为酶作用的最适pH。溶液的pH值高于或低于最适pH时都会使酶的活性降低,远离最适pH值时甚至导致酶的变性失活。

(5)激活剂和抑制剂:激活剂是指能增强酶活性的物质,如Cl是唾液淀粉酶的激活剂。与激活剂相反,凡能降低酶的活性,甚至使酶完全丧失活性的物质称为酶的抑制剂。抑制剂对酶活性的抑制作用包括不可逆抑制和可逆抑制两类:

①不可逆抑制作用,其抑制剂通常以共价键与酶活性中心上的必需基团相结合,使酶失活。如有机磷化合物能与许多种酶活性中心丝氨酸残基上的羟基结合,使酶失活。

②可逆的抑制作用:包括竞争性抑制与非竞争性抑制两种。在竞争性抑制中,抑制剂常与底物的结构相似,它与底物共同竞争酶的活性中心,从而阻碍底物与酶的结合,如丙二酸对琥珀酸脱氢酶的抑制。非竞争性抑制中的抑制剂可以与酶活性中心外的部位可逆结合,这种结合不影响酶对底物的结合。底物与抑制剂之间无竞争关系,但酶一底物一抑制剂不能进一步释放出产物。对酶促反应速度及其影响因素的研究具有重要的理论和实践意义。

试题详情

(二)核酸的结构与生物学功能

核酸是生物体内极其重要的生物大分子,是生命的最基本的物质之一。最早是瑞士的化学家米歇尔于1870年从脓细胞的核中分离出来的,由于它们是酸性的,并且最先是从核中分离的,故称为核酸。核酸的发现比蛋白质晚得多。核酸分为脱氧核糖核酸(简称DNA)和核糖核酸(简称RNA)两大类,它们的基本结构单位都是核苷酸(包含脱氧核苷酸)。

1.核酸的基本单位--核苷酸

每一个核苷酸分子由一分子戊糖(核糖或脱氧核糖)、一分子磷酸和一分子含氮碱基组成。碱基分为两类:一类是嘌呤,为双环分子;另一类是嘧啶,为单环分子。嘌呤一般均有A、G2种,嘧啶一般有C、T、U3种。这5种碱基的结构式如下图所示。

由上述结构式可知:腺嘌呤是嘌呤的6位碳原子上的H被氨基取代。鸟嘌呤是嘌呤的2位碳原子上的H被氨基取代,6位碳原子上的H被酮基取代。3种嘧啶都是在嘧啶2位碳原子上由酮基取代H,在4位碳原子上由氨基或酮基取代H而成,对于T,嘧啶的5位碳原子上由甲基取代了H。凡含有酮基的嘧啶或嘌呤在溶液中可以发生酮式和烯醇式的互变异构现象。结晶状态时,为这种异构体的容量混合物。在生物体内则以酮式占优势,这对于核酸分子中氢键结构的形成非常重要。例如尿嘧啶的互变异构反应式如下图。

      酮式(2,4–二氧嘧啶)   烯酸式(2,4–二羟嘧啶)

在一些核酸中还存在少量其他修饰碱基。由于含量很少,故又称微量碱基或稀有碱基。核酸中修饰碱基多是4种主要碱基的衍生物。tRNA中的修饰碱基种类较多,如次黄嘌呤、二氢尿嘧啶、5–甲基尿嘧啶、4–硫尿嘧啶等,tRNA中修饰碱基含量不一,某些tRNA中的修饰碱基可达碱基总量的10%或更多。

核苷是核糖或脱氧核糖与嘌呤或嘧啶生成的糖苷。戊糖的第1碳原子(C1)通常与嘌呤的第9氮原子或嘧啶的第1氮原子相连。在tRNA中存在少量5–核糖尿嘧啶,这是一种碳苷,其C1是与尿嘧啶的第5位碳原子相连,因为这种戊糖与碱基的连接方式特殊(为C-C连接),故称为假尿苷如下图。

腺苷(A)   脱氧胸苷(dT)   假尿苷(ψ)

核苷酸是由核苷中糖的某一羟基与磷酸脱水缩合而成的磷酸酯。核苷酸的核糖有3个自由的羟基,可与磷酸酯化分别生成2’–、3’–和5’–核苷酸。脱氧核苷酸的脱氧核糖只有2个自由羟基,只能生成3’–和5’–脱氧核苷酸。生物体内游离存在的核苷酸都是5’–核苷酸。以RNA的腺苷酸为例:当磷酸与核糖5位碳原子上羟基缩合时为5’–腺苷酸,用5’–AMP表示;当磷酸基连接在核糖3位或2位碳原子上时,分别为3’–AMP和2’–AMP。5’–腺苷酸和3’–脱氧胞苷酸的结构式如下图所示。

核苷酸结构也可以用下面简式(如下图)表示。B表示嘌呤或嘧啶碱基,直线表示戊糖,P表示磷酸基。

         2’–核苷酸  3’–核苷酸  5’–核苷酸

3’–或5’–核苷酸简式也可分别用Np和pN表示(N代表核苷)。即当P在N右侧时为3’–核苷核,P在N左侧的为5’–核苷酸,如3’–核苷酸和5’–核苷酸可分别用Ap和pA表示。

在生物体内,核苷酸除了作为核酸的基本组成单位外,还有一些核苷酸类物质自由存在于细胞内,具有各种重要的生理功能。

(1)含高能磷酸基的ATP类化合物:5’–腺苷酸进一步磷酸化,可以形成腺苷二磷酸和腺苷三磷酸,分别为ADP和ATP表示。ADP是在AMP接上一分子磷酸而成,ATP是由AMP接上一分子焦磷酸(PPi)而成,它们的结构式如下图所示。

腺苷二磷酸(ADP)   腺苷三磷酸(ATP)

这类化合物中磷酸之间是以酸酐形式结合成键,磷酸酐键具有很高的水解自由能,习惯上称为高能键,通常用“-”表示。ATP分子中有2个磷酸酐键,ADP中只含1个磷酸酐键。

在生活细胞中,ATP和ADP通常以Mg2+或Mn2+盐的复合物形式存在。特别是ATP分子上的焦磷酸基对二价阳离子有高亲和力;加上细胞内常常有相当高浓度的Mg2+,使ATP对Mg2+的亲和力远大于ADP。在体内,凡是有ATP参与的酶反应中,大多数的ATP是以Mg2+-ATP复合物的活性形式起作用的。当ATP被水解时,有两种结果:一是水解形成ADP和无机磷酸;另一种是水解生成AMP和焦磷酸。ATP是大多数生物细胞中能量的直接供体,ATP-ADP循环是生物体系中能量交换的基本方式。

在生物细胞内除了ATP和ADP外,还有其他的5’–核苷二磷酸和三磷酸,如GDP、CDP、UDP和GTP、CTP、UTP;5’–脱氧核苷二磷酸和三磷酸,如dADP、dGDP、 dTDP、dCDP和dATP、dCTP、dGTP、dTTP,它们都是通过ATP的磷酸基转移转化来的,因此ATP是各种高能磷酸基的主要来源。除ATP外,由其他有机碱构成的核苷酸也有重要的生物学功能,如鸟苷三磷酸(GTP)是蛋白质合成过程中所需要的,鸟苷三磷酸(UTP)参与糖原的合成,胞苷三磷酸(CTP)是脂肪和磷脂的合成所必需的。还有4种脱氧核糖核苷的三磷酸酯。即dATP、dCTP、dGTP、dTTP则是DNA合成所必需的原材料。

(2)环状核苷酸;核苷酸可在环化酶的催化下生成环式的一磷酸核苷。其中以3’,5’–环状腺苷酸(以cAMP)研究最多,它是由腺苷酸上磷酸与核糖3’,5’碳原子酯化而形成的,它的结构式如下图所示。

正常细胞中cAMP的浓度很低。在细胞膜上的腺苷酸环化酶和Mg2+存在下,可催化细胞中ATP分子脱去一个焦磷酸而环化成cAMP,使cAMP的浓度升高,但cAMP又可被细胞内特异性的磷酸二酯酶水解成5’–AMP,故cAMP的浓度受这两种酶活力的控制,使其维持一定的浓度。该过程可简单表示如下:

ATPcAMP+焦磷酸5’–AMP

现认为cAMP是生物体内的基本调节物质。它传递细胞外的信号,起着某些激素的“第二信使”作用。不少激素的作用是通过cAMP进行的,当激素与膜上受体结合后,活化了腺苷酸环化酶,使细胞内的cAMP含量增加。再通过cAMP去激活特异性的蛋白激酶,由激酶再进一步起作用。近年来发现3’、5’–环鸟苷酸(cGMP)也有调节作用,但其作用与cAMP正好相拮抗。它们共同调节着细胞的生长和发育等过程。此外,在大肠杆菌中cAMP也参与DNA转录的调控作用。

2.核酸的化学结构(或一级结构)

核酸分子是由核苷酸单体通过3’,5’–磷酸二酯键聚合而成的多核苷酸长链。核苷酸单体之间是通过脱水缩合而成为聚合物的,这点与蛋白质的肽链形成很相似。在脱水缩合过程中,一个核苷酸中的磷酸给出一个氢原子;另一个相邻核苷酸中的戊糖给出一个羟基,产生一分子水,每个单体便以磷酸二酯键的形式连接起来。由许多个核苷酸缩合而形成多核苷酸链。如果用脾磷酸二酯酶来水解多核苷酸链,得到的是3’–核苷酸,而用蛇毒磷酸二酯酶来水解得到的却是5’–核苷酸。这证明多核苷酸链是有方向的,一端叫3’–未端,一端叫5’–末端。所谓3’–末端是指多核苷酸链的戊糖上具有3’–磷酸基(或羟基)的末端,而具有5’–磷酸基(或羟基)的末端则称为5’末–端。多核苷酸链两端的核苷酸为末端核苷酸,末端磷酸基与核苷相连的键称为磷酸单酯键。书写多核苷酸链时,通常将5’端写在左边,3’端写在右边。但在书写一条互补的双链DNA时,由于二条链是反向平行的,因此每条链的末端必须注明5’或3’。通常寡核苷酸链可用右面的简式表示(如右图所示)。

述简式还可简化为pApCpGpUOH,若进一步简化,还可将核苷酸链中的p省略,或在核苷酸之前加小点,则变为pACGUOH或pA·C·G·UOH

3.核酸的性质

(1)一般性质

核酸和核苷酸既有磷酸基,又有碱性基团,为两性电解质,因磷酸的酸性强,通常表现为酸性。核酸可被酸、碱或酶水解成为各种组分,其水解程度因水解条件而异。RNA在室温条件下被稀碱水解成核苷酸而DNA对碱较稳定,常利用该性质测定RNA的碱基组成或除去溶液中的RNA杂质。DNA为白色纤维状固体,RNA为白色粉末;都微溶于水,不溶于一般有机溶剂。常用乙醇从溶液中沉淀核酸。

(2)核酸的紫外吸收性质

核酸中的嘌呤碱和嘧啶碱均具有共轭双键,使碱基、核苷、核苷酸和核酸在240-290nm的紫外波段有一个强烈的吸收峰,最大吸收值在260nm附近。不同的核苷酸有不同的吸收特性。由于蛋白质在这一光区仅有很弱的吸收,蛋白质的最大吸收值在280nm处,利用这一特性可以鉴别核酸纯度及其制剂中的蛋白质杂质。

(3)核酸的变性和复性

①核酸的变性:是指核酸双螺旋区的氢键断裂,碱基有规律的堆积被破坏,双螺旋松散,发生从螺旋到单键线团的转变,并分离成两条缠绕的无定形的多核苷酸单键的过程。变性主要是由二级结构的改变引起的,因不涉及共价键的断裂,故一级结构并不发生破坏。多核苷酸骨架上共价键(3’,5’-磷酸二酯健)的断裂称为核酸的降解,降解引起核酸分子量降低。引起核酸变性的因素很多,如加热引起热变性,pH值过低(如pH<4=的酸变性和pH值过高(pH>11.5)的碱变性,纯水条件下引起的变性以及各种变性试剂,如甲醇、乙醇、尿素等都能使核酸变性。此外,DNA的变性还与其分子本身的稳定性有关,由于C-C中有三对氢健而A-T对只有两对氢键,故C+G百分含量高的DNA分子就较稳定,当DNA分子中A+T百分含量高时就容易变性。环状  DNA分子比线形DNA要稳定,因此线状DNA较环状DNA容易变性。

核酸变性后,一系列物理和化学性质也随之发生改变,如260nm区紫外吸收值升高,粘度下降,浮力密度升高,同时改变二级结构,有的可以失去部分或全部生物活性。DNA的加热变性一般在较窄的温度范围内发生,很像固体结晶物质在其熔点突然熔化的情况,因此通常把热变性温度称为“熔点”或解键温度,用Tm表示。对DNA而言,通常把DNA的双螺旋结构失去一半时的温度(或变性量达最大值的一半时的温度)称为该DNA的熔点或解链温度。在此温度可由紫外吸收(或其他特性)最大变化的半数值得到。DNA的Tm值一般在70℃-85℃。RNA变性时发生与DNA变性时类似的变化,但其变化程度不及DNA大,因为RNA分子中只有部分螺旋区。

②核酸的复性:变性DNA在适当条件下,又可使两条彼此分开的链重新缔合成为双螺旋结构,这个过程称为复性。DNA复性后,许多物理、化学性质又得到恢复,生物活性也可以得到部分恢复。DNA的片段越大,复性越慢;DNA的浓度越高,复性越快。

DNA或RNA变性或降解时,其紫外吸收值增加,这种现象叫做增色效应,与增色效应相反的现象称为减色效应,变性核酸复性时则发生减色效应。它们是由堆积碱基的电子间相互作用的变化引起的。

试题详情

(一)蛋白质的结构和生物学功能

蛋白质是构成细胞和生物体的基本物质,占细胞干重的一半,生物膜中蛋白质的含量占60%-70%,蛋白质在原生质的有机成分中占80%。所有蛋白质的元素组成都很近似,都含有C、H、O、N四种元素,其中平均含氮量约占16%,这是蛋白质在元素组成上的一个特点。蛋白质是一类极为复杂的含氮高分子化合物,其基本组成单位是氨基酸。

1.蛋白质的基本组成单位--氨基酸

组成蛋白质的氨基酸有20种,其中19种结构可用通式表示。另一种为脯氨酸,它也有类似结构,但侧链与氮原子相接形成亚氨基酸。除甘氨酸外,蛋白质中的氨基酸都具有不对称碳原子,都有L-型与D一型之分,为区别两种构型,通过与甘油醛的构型相比较,人为地规定一种为L型,另种为D一型。当书写时-NH2写在左边为L型,-NH2在右为D一型。已知天然蛋白质中的氨基酸都属L型。

20种基本氨基酸中,有许多是能在生物体内从其他化合物合成的。但其中有8种氨基酸是不能在人体内合成的,叫必需氨酸。它们是:苏氨酸(Thr)、亮氨酸(Leu)、异亮氨酸(Ile)、甲硫酸(Met)、苯丙氨酸(Phe)、色氨酸(Try)、赖氨酸(Lys)和缬氨酸(Val)。20种氨基酸的分类,主要是根据R基来区分的。早些年根据R基的结构把氨基酸分为脂肪族、芳香族和杂环族三类,其中脂肪族又分为中性(一氨基一羧基)、酸性(一氨基二羧基)和碱性(二氨基一羧基)氨基酸。近年来都按R基的极性来区分氨酸的种类。

对于含有一个氨基和一个羧基的α–氨基酸来说,在中性溶液中或固体状态下,是以中性分子的形式还是以两性离子的式存在呢?许多实验证明主要是以两性离子的形式存在。

    

中性分子形式      两性离子形式

氨基酸由于含有氨基和羧基,因此在化学性质上表现为是的一种兼有弱碱和弱酸的两性化合物。氨基酸在溶液中的带电状态,会随着溶液的pH值而变化,如果氨基酸的净电荷等于零,在外加电场中不发生向正极或负极移动的现象,在这种状态下溶液的pH值称为其等电点,常用pI表示。由于各种氨基酸都有特定的等电点,因此当溶液的pH值低于某氨基酸的等电点时,则该氨基酸带净正电荷,在电场中向阴极移动。若溶液的pH值高于某氨基酸的等电点时,则该氨基酸带净负电荷,在电场中向阳极移动。氨基酸等电点的计算方法:对于单氨基单羧基的氨基酸,其等电点是pK1和Pk2的算术平均值,即从pI=1/2(pK1+pK2)公式中求得;对于含有3个可解离基团的氨基酸来说,只要依次写出它从酸性经过中性至碱性溶溶解高过程中的各种离子形式,然后取两性离子两侧的pK值的算术平均值,即可得其pI值。例如Asp解离时,有3个pK值,在不同pH条件下可以有4种离子形式,如下图所示。

在等电点时,两性离子形式主要是Asp+,因此Asp的pI=1/2(pK1+pK2)=1/2(2.09+3.86)=2.98。同样方法可以求得其他含有3个pK值的氨基酸的等电点。各种氨基酸在可见光区都没有光吸收,而在紫外光区仅色氨酸、酪氨酸和苯丙氨酸有吸收能力。其中色氨酸的最大吸收波长为279nm,酪氨酸的最大吸收波长为278nm,苯丙氨酸的为259nm。利用紫外光法可以测定这些氨基酸的含量。蛋白质在280nm的紫外光吸收绝大部分是由色氨酸和酪氨酸所引起的。因此测定蛋白质含量时,用紫外分光光度法测定蛋白质在280nm的光吸收值是一种既简便而又快速的方法。

2.蛋白质的化学结构与空间结构

组成蛋白质的氨基酸,是借助肽键连接在一起的。肽键是由一个氨基酸分子中的α氨基与相邻的另一个氨基酸分子中α–羧基,通过失水缩合而成,这样连起来的氨基酸聚合物叫做肽。肽链上的各个氨基酸,由于在相互连接的过程中丢失了α–氨上的H和α–羧基上的OH,被称之为氨基酸残基。在多肽链一端氨基酸含有一个尚未反应的游离氨基(一NH2),称为肽链的氨末端氨基酸或N末端氨基酸;另一端的氨基酸含有一个尚未反应的游离羧基(-COOH),称为肽链的羧基末端氨基酸或C末端氨基酸。一般表示多肽链时,总是把N末端写在左边,C末端写右边。合成肽链时,合成方向是从N末端开始,逐渐向C末延伸。

各种蛋白质分子都有特定的空间结构,即构象。

蛋白质的一级结构:又称初级结构或化学结构,是指组成蛋质分子的多肽链中氨基酸的数目、种类和排列顺序,多肽链的数目,同时也包括链内或键间二硫键的数目和位置等。蛋白质分子的一级结构是由共价键形成的,肽键和二硫键都属于共价键。肽键是蛋白质分子中氨基酸连接的基本方式,形成共价主链。二硫键(-S-S)是由两个半胱氨酸(残基)脱氢连接而成的,是连接肽链内或肽链间的主要化学键。二硫键在蛋白质分子中起着稳定肽链空间结构的作用,往往与生物活力有关。二硫键被破坏后,蛋白质或多肽的生物活力就会丧失。蛋白质结构中,二硫键的数目多,蛋白质结构的稳定性就越强。在生物体内起保护作用的皮、角、毛发的蛋白质中,二硫键最多。

蛋白质的二级结构:是指多肽链本身折叠和盘绕方式,是指蛋白质分子中的肽链向单一方向卷曲而形成的有周期性重复的主体结构或构象。这种周期性的结构是以肽链内或各肽链间的氢键来维持。常见的二级结构有α–螺旋、β–折叠、β–转角等。例如动物的各种纤维蛋白,它们的分子围绕一个纵轴缠绕成螺旋状,称为α–螺旋。相邻的螺旋以氢键相连,以保持构象的稳定。指甲、毛发以及有蹄类的蹄、角、羊毛等的成分都是呈α–螺旋的纤维蛋白,又称α–角蛋白。β–折叠片是并列的比α–螺旋更为伸展的肽链,互相以氢铸连接起来而成为片层状,如蚕丝、蛛丝中的β–角蛋白。

蛋白质的三级结构:是指在二级结构的基础上,进一步卷曲折叠,构成一个很不规则的具有特定构象的蛋白质分子。维持三级结构的作用力主要是一些所谓弱的相互作用,即次级键或称非共价键,包括氢键、盐键、疏水键和范德华力等。盐键又称离子健,是蛋白质分子中正、负电荷的侧链基团互相接近,通过静电吸引而形成的,如羧基和氨基、胍基、咪唑基等基团之间的作用力。疏水键是多肽链上的某些氨基酸的疏水基团或疏水侧链(非极性侧链)由于避开水而造成相互接近、粘附聚集在一起。它在维持蛋白质三级结构方面占有突出地位。范德华引力是分子之间的吸引力。此外二硫键也对三级结构的构象起稳定作用。

具有三级结构的球蛋白是一类比纤维蛋白的构象更复杂的蛋白质。肽链也有α–螺旋、β–折叠片等构象单元,这些构象单元之间由肽链中不规则卷曲的肽段相连接,使整个肽铸折叠成近乎球状的不规则形状。酶、多种蛋白质激素、各种抗体以及细胞质和细胞膜中的蛋白质都是球蛋白。和纤维蛋白不同,球蛋白的表面富有亲水基团,因此都能溶于水。

蛋白质的四级结构:是由两条或两条以上的具有三级结构的多肽聚合而成特定构象的蛋白质分子。构成功能单位的各条肽链,称为亚基,一般地说,亚基单独存在时没有生物活力,只有聚合成四级结构才具有完整的生物活性。例如,磷酸化酶是由2个亚基构成的,谷氨酸脱氢酶是由6个相同的亚基构成的,血红蛋白是由4个不同的亚基(2个α肽链,2个β链)构成的,每个链都是一个具三级结构的球蛋白。亚基聚合成四级结构,是通过分子表面的一些次级键,主要是盐键和氢键结合而联系在一起的。有些蛋白质分子只有一、二、三级结构,并无四级结构,如肌红蛋白、细胞色素C、核糖核酸酶、溶菌酶等。另一些蛋白质,则一、二、三、四级结构同时存在,如血红蛋白、过氧化氢酶、谷氨酸脱氢酶等。

3.蛋白质的性质及生物学功能

蛋白质是由许多氨基酸分子组成的,分子量很大。所以它有的性质与氨基酸相同,有的性质又与氨基酸不同,如胶体性质、变构作用和变性作用等。

(1)胶体性质:蛋白质分子量很大,容易在水中形成胶体粒,具有胶体性质。在水溶液中,蛋白质形成亲水胶体,就是在胶体颗粒之外包含有一层水膜。水膜可以把各个颗粒相互隔开,所以颗粒不会凝聚成块而下沉。

(2)变构作用:含2个以上亚基的蛋白质分子,如果其中一个亚基与小分子物质结合,那就不但该亚基的空间结构要发生变化,其他亚基的构象也将发生变化,结果整个蛋白质分子的构象乃至活性均将发生变化,这一现象称为变构或别构作用。例如,某些酶分子可以和它所催化的最终产物结合,引起变构效应,使酶的活力降低,从而起到反馈抑制的效果。

(3)变性作用:蛋白质在重金属盐(汞盐、银盐、铜盐等)、酸、碱、乙醛、尿素等的存在下,或是加热至70-100℃,或在X射线、紫外线的作用下,其空间结构发生改变和破坏,从而失去生物学活性,这种现象称为变性。变性过程中不发生肽键断裂和二硫键的破坏,因而不发生一级结构的破坏,而主要发生氢键、疏水键的破坏,使肽链的有序的卷曲、折叠状态变为松散无序。

种类繁多的蛋白质具有多种多样的生物学功能,归纳起来主要具有下列5个方面:(1)作为酶,蛋白质具有催化功能。(2)作为结构成分,它规定和维持细胞的构造。(3)作为代谢的调节者(激素或阻遏物),它能协调和指导细胞内的化学过程。(4)作为运输工具,它能在细胞内或者透过细胞膜传递小分子或离子。(5)作为抗体,它起着保护有机体,防御外物入侵的作用。蛋白质是一切生命现象不可缺少的,即使像病毒、类病毒那样以核酸为主体的生物,也必须在它们寄生的活细胞的蛋白质的作用下,才能表现出生命现象。

试题详情

在中学生物学教学大纲中,已简单介绍过蛋白质、核酸、ATP的结构和功能、酶和酶特性以及蛋白质的生物合成等知识,根据国际生物学奥林匹克竞赛纲要和全国中学生生物学竞赛大纲(试行)的要求,有关生物化学的内容在竞赛中经常要用到的一些知识,还必须在原有高中生物基础上加以充实和提高。

试题详情

例1  甲、乙两个细胞分别在0.25M和0.35M的蔗糖溶液中发生初始质壁分离,若该两个细胞相邻,试问:

(1)在25℃条件下细胞间水分的移动方向?

(2)甲、乙两细胞的水势(ψw),渗透势(ψs)和压力势(ψp)分别是多少?

分析  解答此题,必须明确以下两个隐含条件,即(1)当细胞处于初始质壁分离时,细胞液浓度等于外液浓度;(2)细胞出现质壁分离以后,压力势(ψp)=0,细胞的水势(ψw)等于细胞的渗透势(ψs)。运用公式P=iCRT,即可求出细胞的渗透势(即水势),再根据甲、乙两细胞水势的大小来判断水分移动的方向。

解:依据公式P=iCRT,ψs=p,则

甲细胞的ψs=-iCRT=-1×0.25×0.082×(273+25)=-6.11(大气压)=-6.11×1.013=-6.19(巴)

乙细胞的ψs=-iCRT=-1×0.35×0.082×(273+25)=-8.56(大气压)=-8.56×1.013=-8.67(巴)

∵ψp=0   ∴ψs=ψw

故:甲细胞的ψw=-6.19巴,乙细胞的ψw=-8.67巴,乙细胞的水势低于甲细胞,所以水分从甲细胞向乙细胞移动。

例2  对下列说法中,正确的是   

A  一个细胞放入某一浓度的溶液中时,若细胞液浓度与外界溶液的浓度相等,则体积不变。

B  若细胞的ψp=-ψs,将其放入某一溶液中时,则体积不变。

C  若细胞的ψw=ψs,将其放入纯水中,则体积变大。

D  有一充分饱和的细胞,将其放入比细胞液浓度低50倍的溶液中,则体积不变。

分析  A  除了处于初始质壁分离的状态的细胞之外,当细胞内液浓度与外液浓度相等时,由于细胞ψwp的存在,因而细胞水势高于外液水势而发生失水,体积会变小。

B  由于细胞ψw=0,则把该细胞放入任意溶液时,都会失水,体积变小。

C  当细胞的ψw=ψs时,将其放入纯水中,由于ψp=0,而ψs为一负值,故此时细胞吸水,体积变大。

D  充分胞和的细胞ψw=0,稀释溶液的ψw<0,所以该细胞会失水,体积变小。

试题详情

(五)植物的成花生理

1.春化作用

低温对植物成花的促进作用称为春化作用。某些植物在其个体发育的某一个时期对低温有特殊要求,只有经低温的处理后,才能形成花芽。如冬小麦一般在秋季播种,冬前经历一段营养生长,经受低温后,于第二年夏初开花结实。冬小麦春播不抽穗,是因为未能满足它对低温的要求。如将萌动的种子放在0-5℃的低温中,经过30-50天,就可以春播而正常开花结实。一年生的冬性禾谷类作物、二年生的植物如甜菜、萝卜和大白菜以及某些多年生草本植物如牧草,都有春化现象。春化过程中感受低温的部位是芽内的分生组织,其作用只能随着细胞的分裂传递给子细胞。

2.植物的光周期诱导

(1)植物感受光周期的部位和时期

试验证明,植物感受光周期刺激的部位是叶片而不是生长点。如将短日植物菊花做如下处理:a.叶片在短日照下,生长点处在长日照;b.叶片进行长日照处理,生长点处在短日照下。结果a处理开了花,而b处理不开花。对光周期反应敏感的植物,如苍耳,只要有一片叶子、甚至半片叶子获得所需要的光周期即能使植物开花。萝卜、日本牵牛也如此。

植物对光周期的反应与叶龄有关,一般讲子叶无感光能力,幼嫩叶片的感受能力很小,充分展开的成熟叶片感受能力最强,老叶也失去感受能力。不同植物开始对光周期表现敏感的年龄也不同,如大豆、日本牵牛是在子叶伸展期,水稻在5-7叶时期,红麻则在6叶期。

(2)光周期中光与黑暗的意义

许多试验证明,对于短日照植物,在光周期中真正起诱导作用的是一定长度的黑暗,只要暗期达到临界夜长,不管先期的长短,短日植物均能开花。(如下图所示)

长日和短日或长夜或短夜影响苍耳开花的图解

对于长日植物来讲,只要暗期不超过临界夜长,无论光期的长短,也都可使之开花。可以这样讲,在光周期诱导中实际上是长夜诱导短日植物开花,抑制长日植物开花。对于植物的开花来讲,暗期比光照更重要。短日植物在超过一定的暗期长度时开花,长日植物则是在短于一定的暗期长度时开花。这也可由闪光实验得到证实(如下图所示)。

长日照的暗间断和长夜的光间断对长日植物和短日植物影响的图解

以上实验证明,用闪光中断长夜,尽管暗期的长度不变,却使长日植物开了花,而短日植物的开花受到了抑制;用黑暗中断长日,尽管光期变短,但却仍然是长日植物开花,短日植物不开花。充分说明了一定长度的连续暗期在花诱导中的重要性。

(3)光敏色素在成花中的作用

植物体中有一种光敏色素。这种色素在植物体内以两种状态存在,一种是吸收红光的状态(Pr),吸收峰为660nm;另一种是吸收远红光的状态(Pfr),吸收峰为730nm。Pr吸收红光后则转变成Pfr,而Pfr吸收远红光后则转变成Pr。Pfr是具有生理活性的形式。当Pfr与某些物质形成复合物后,则引起成花刺激物的合成。所以光敏色素在成花反应中的作用在于感受光,并诱导成花刺激物的形成。

光敏色素除了作为诱导植物开花的光受体外,还在许多光调节过程如需光种子萌发和光形态建成反应中起光受体作用。

试题详情

(四)呼吸作用

呼吸作用为生物体进行生命活动提供能量,任何活的细胞都在不停地进行着呼吸作用,呼吸作用的停止就意味着细胞的死亡。呼吸作用分为有氧呼吸和无氧呼吸两种类型。

1.有氧呼吸的全过程

细胞有氧呼吸的全过程可分为以下三个步骤:

糖酵解:将一分子葡萄糖分解为两分子丙酮酸,并且发生氧化(脱氢)和生成少量ATP。

三羧酸循环:丙酮酸彻底分解为CO2和氢(这个氢被传递氢的辅酶携带着),同时生成少量的ATP。

氧化磷酸化:氢(氢离子和电子)被传递给氧以生成水,并且放出大部分的能量,以生成ATP。

(1)糖酵解

糖酵解是葡萄糖氧化的第一阶段。包括一系列反应,都是在细胞质中发生的,不需要氧,每一步反应都有特定的酶催化。

糖酵解的全过程,主要包括以下步骤:

①葡萄糖磷酸化:葡萄糖氧化是放能反应,但葡萄糖是比较稳定的化合物,如果要使它氧化放出能量来,必须先给予活化能来推动这个反应,使葡萄糖从稳定状态变为活跃状态。这个活化能是由ATP提供的。一个ATP的磷酸通过己糖激酶的催化反应而连到葡萄糖分子的6位碳上,使葡萄糖成为葡萄糖–6–磷酸,这一反应是放能反应,一个ATP放出一个高能磷酸键,大约释放出30.5kJ自由能,其中大部分变为热而散失,小部分用于使磷酸与葡萄糖结合,由于葡萄糖中的磷酸键不是高能的,所以写成直线。

②葡萄糖–6–磷酸经异构酶的催化而变为它的异构体果糖–6–磷酸,然后又有一个ATP分解,一个磷酸根连到1位C上,成为果糖一1,6–二磷酸。这一反应是通过磷酸果糖激酶的催化而实现的。

反应至此,消耗了2个ATP分子,经过一系列酶的催化一个葡萄糖分子形成一个果糖一1,6–二磷酸分子。

③醛缩酶催化果糖一1,6–二磷酸裂解,产生2个分子的三碳化合物,它们分别是磷酸二羟丙酮和3–磷酸甘油醛(PGALd),以参加进一步的代谢。

以上从一个分子葡萄糖转化为2分子的PGALd,是糖酵解的第一阶段。这一阶段不但没有产生ATP,反而从细胞贮备中消耗了2个ATP。

④PGALd的氧化和磷酸化,生成1,3–二磷酸甘油酸。2个PGALd氧化,脱下2个已同时放出能(-43.1kJ),H由辅酶NAD+(电子受体)接受而成为还原态的NADH+H+;产生的一部分能则贮存于高能磷酸键中,即PGALd分子从细胞质基质的无机磷酸盐(Pi)中吸收一个磷酸,生成1,3–二磷酸甘油酸(DPGA)。由于这一分子中新形成的键是高能的,所以用曲线表示。

⑤DPGA的高能磷酸键转移至ADP,产生ATP和3–磷酸甘油酸,这一反应称为底物水平的磷酸化,以示与氧化磷酸化的区别。至此,细胞从一个分子的葡萄糖获得了2个ATP,同时有2个NAD+还原为2个NADH+H+

⑥3–磷酸甘油酸经2–磷酸甘油酸转化为磷酸烯醇式丙酮酸,它的磷酸键吸收了自由能而变成了高能键,在丙酮酸激酶的催化下,发生第二次底物水平的磷酸化,又生成2个ATP和2个丙酮酸。

以上是糖酵解的第二阶段,这一阶段共产生了4个ATP。

糖酵解过程的总账是:一分子的葡萄糖分解为2个分子的丙酮酸,NAD+被还原,产生了2个 NADH+H+。总反应为:

葡萄糖+2ADP+2Pi+2NAD+→2丙酮酸+2ATP+2NADH+2H++2H2O

在葡萄糖到丙酮酸的整个过程中,能位是逐步下降的,但只有上述两个反应的能位下降较大,足以生成ATP。其他反应则只有微小的下降,还不足以生成ATP。

葡萄糖经过精酵解过程只放出了不足l/4的化学能,大部分能量还保存在2个丙酮酸分子和2个NADH中。糖酵解发生在胞质中,而丙酮酸的继续氧化包括三羧酸循环和电子传递两个过程,则是在线粒体中进行的。丙酮酸在进入三羧酸循环之前,先要氧化脱羧,与辅酶A结合成为活化的乙酸辅酶A(简写为乙酸CoA)。这一过程除释放出1分子CO2外(这是细胞呼吸最早释放出来的CO2),同时还发生NAD+的还原。氧化脱羧实际上就是脱氢脱羧过程。丙酮酸的氧化脱羧是在线粒体基质中进行的,所产生的乙酸CoA即进入三羧酸循环(或称柠檬酸循环),三羧酸循环也发生在线粒体基质中。

(2)柠檬酸循环

柠檬酸循环的得名是由于在这个循环中有一个关键的中间代谢物,即柠檬酸。柠檬酸是一种三羧酸,所以这一循环又称为三羧酸循环(简称为TCA循环)。

柠檬酸循环途径中的酶,除琥珀酸脱氢酶定位于线粒体内膜之外,其余均存在于线粒体基质中。柠檬酸循环的全过程分述如下:

柠檬酸循环的第一步是每个二碳的乙酰CoA分子和一个四碳的草酰乙酸分子结合,生成六碳的柠檬酸:

乙酸CoA+草酰乙酸→柠檬酸+CoA

柠檬酸继续氧化,逐步脱去2个羧基,生成四碳化合物,最后又形成四碳的草酰乙酸,再与乙酰CoA结合,开始另一次循环。在这一全过程中,丙酮酸的3个碳在转变为乙酰CoA时脱去一个,在柠檬酸循环中脱去2个。这3个碳原子氧化的结果生成3个分子CO2,这样葡萄糖中的碳就被完全氧化了。

TCA过程中发生的主要事件的顺序为:

① 乙酰CoA与草酰乙酸结合,生成六碳的柠檬酸,释放CoA。

② 柠檬酸分子不能进行脱氢反应,它先失去一个H2O而成为顺乌头酸,再结合一个 H2O转变为异柠檬酸。

③ 异柠檬酸同时进行脱氢和脱数反应,生成五碳的α–酮戊二酸,放出一个CO2,同时一个NAD+还原为NADH+H+

④ a–酮戊二酸也同时进行脱氢和脱羧反应,并和CoA结合,生成含有一个高能硫键的四碳化合物,即琥珀酸CoA,同时释放出一个CO2,并且将NAD+还原为NADH+H+。故这一反应与丙酮酸的脱氢脱羧反应相同,也是有CoA参与的。

⑤ 琥珀酰CoA脱去CoA和高能硫键而成为琥珀酸,放出的能量则转入高能磷酸键中,即生成三磷酸鸟苷(GTP),GTP再将高能磷酸转入ADP产生ATP。这也是底物水平磷酸化的过程。

⑥ 琥珀酸脱氢生成延胡索酸。催化这一反应的琥珀酸脱氢酶定位于线粒体内膜上,其辅酶是FAD,而不是NAD+,所以在这里是FAD接受氢而生成FADH2

⑦ 延胡索酸和水化合而成苹果酸。

⑧ 苹果酸氧化脱氢,生成草酰乙酸,亦即草酰乙酸再生,可重新与新的乙酸CoA分子结合,开始新一轮循环。在这一反应过程中,一个NAD+还原为NADH+H+

柠檬酸进行一次循环,投入的原料是二碳的乙酸酰CoA,并释放2分子CO2,8个氢(8个质子和8个电子),其中4个来自乙酰CoA,另4个来自加入的水分子。这些氢被传递到电子受体上,生成3分子NADH+H+和1分子FADH2。此外,柠檬酸循环中还生成了1分子ATP,这也属于底物水平的磷酸化。由于一个葡萄糖分子产生2个乙酰CoA,所以一个葡萄糖分子在柠檬酸循环中共产生4个CO2分子6个NADH+H+分子个FADH2分子和2个ATP分子。

(3)电子传递系统和氧化磷酸化

葡萄糖经过糖酵解和柠檬酸循环而全部被氧化,氧化所产生的能量一部分储存在ATP中,一部分还保留在NADH和FADH2中。NADH+H+和FADH2中的能量如何释放出来而转移给ATP呢?这是靠包括分子氧在内的电子传递系统或电子传递链来完成的。

电子传递链就是存在于线粒体内膜上的一系列电子传递体,如FMN、CoQ和各种细胞色素等。分子氧是电子传递链中最后的电子受体。糖酵解和柠檬酸循环产生的NADH+H+和FADH2中的电子和H+,沿着电子传递链上各电子传递体顺序地传递,最后到达分子氧。在这一过程中,所释放的能量就通过磷酸化而被储存到ATP中。所以这里的ATP的形成是发生在线粒体内膜上。这里发生的磷酸化作用是和氧化过程的电子传递紧密相关的,所以和底物水平磷酸化不同,称为氧化磷酸化。关于氧化磷酸化的机制,目前公认的是化学渗透学说。该学说是英国人P.Mitchell经过大量实验后于1961年首先提出的,其主要论点是认为呼吸链存在于线粒体内膜之上,当氧化进行时,呼吸链起质子泵作用,质子被泵出线粒体内膜之外侧(膜间隙),造成了膜内外两侧间跨膜的电化学势差,后者被膜上ATP合成酶所利用,使ADP与Pi合成ATP。每2个质子顺着电化学梯度,从膜间隙进入线粒体基质中所放出的能量可合成一个ATP分子。一个NADH+H+分子经过电子传递链后,可积累6个质子,因而共可生成3个ATP分子;而一个 FADH2分子经过电子传递链后,只积累4个质子,因而只可以生成2个ATP分子。一个葡萄糖分子经过有氧呼吸的全过程,总共能生成的ATP分子数统计如下:

糖酵解:①底物水平的磷酸化…………………………………4个ATP(细胞质基质)

    ②已糖分子活化消耗…………………………………2个ATP(细胞质基质)

    ③产生2分子NADH+H+,经过电子传递生成……4个或6个ATP(线粒体)

    净积累………………………………………………6或 8个ATP

丙酮酸氧化脱羧:产生2分子NADH+H+(线粒体),可生成………………6个ATP

柠檬酸循环:①底物水平磷酸化(线粒体)…………………………………2个ATP

       ②产生6个NADH+H+(线粒体),可生成…………………18个ATP

       ③产生2分子FADH2(线粒体),可生成……………………4个ATP

   总计生成…………………………………………………36或38个ATP

   在糖酵解过程中产生的2分子NADH+H+为什么有时生成4个ATP,有时又生成6个ATP呢?这是因为:糖酵解是在细胞质基质中进行的,在真核生物中,细胞质基质中的NADH+H+不能通过正常的线粒体内膜,线粒体外的NADH+H+可将其所带的H转交给某种能透过线粒体膜的化合物,进入线粒体内以后再氧化。胞质中的NADH+H+是通过下列两种穿梭运送的系统而到达线粒体基质,然后再通过线粒体内膜上的呼吸链进行氧化的。

① 磷酸甘油穿梭系统:胞质中含有以NADH+H+为辅酶的磷酸甘油脱氢酶可以将磷酸二羟丙酮还原为磷酸甘油,后者可以扩散到线粒体基质内。线粒体基质内,则有另一种含有FAD的α–磷酸甘油脱氢酶,它可催化进入的1–磷酸甘油脱氢,形成FADH2。于是胞质内的NADH+H+便间接地形成了线粒体基质内的FADH2,后者通过呼吸链产生ATP,每1分子FADH2可产生2分子ATP。这种穿梭作用主要存在于肌肉、神经组织中。所以葡萄糖在这些组织中彻底氧化所产生的ATP比其他组织中要少2个,即产生36个ATP。

② 苹果酸–草酰乙酸穿梭系统:胞质中含有苹果酸脱氢酶,可催化草酰乙酸还原为苹果酸,后者可以进入线粒体基质。线粒体基质内则有另一种苹果酸脱氢酶,可催化进入的苹果酸脱氢形成草酰乙酸和NADH+H+,于是胞质内的NADH+H+上的H便间接地被转运进入线粒体基质中。草酰乙酸则通过基质和胞质均含有的谷–草转氨酶的作用,从基质返回胞质中。每1分子NADH进入线粒体内膜的呼吸链氧化可产生3分子ATP。在心脏、肝、肾等细胞中,胞质中的NADH+H+属于此种穿梭。所以1分子葡萄糖在这些组织中彻底氧化所产生的ATP分子数为38个。

2.无氧呼吸的过程

(1)酒精发酵:酵母菌和其他一些生物,甚至一些高等植物,在缺氧条件下,都以酒精发酵的形式进行无氧吸吸。这一过程简单地说就是葡萄糖经糖酵解而成为丙酮酸,丙酮酸脱羧放出CO2而生成乙醛,乙醛被NADH+H+而还原成酒精(见下图)。

(2)乳酸发酵:是某些微生物,如乳酸菌的无氧吸吸过程。高等动物有乳酸发酵过程。人在激烈运动时,氧一时供应不足,葡萄糖酵解产生的部分丙酮酸不能氧化脱羧,因而不能进入三羧酸循环,这时丙酮酸就进入乳酸发酵途径(见下图)。

乳酸菌可以使牛奶发酵制成奶酪和酸牛奶。泡菜、酸菜、青贮饲料能够较长时间地保存,也都是利用乳酸发酵积累的乳酸,抑制了其他微生物活动的缘故。

糖酵解是厌氧过程,但不是专性的,在有氧及无氧条件下均能进行。在正常的有氧条件下,通过糖酵解形成的丙酮酸进入线粒体的基质中被完全氧化,形成的NADH+H+通过两种穿梭系统进入线粒体内膜的呼吸链被氧化。在缺氧条件下,NADH+H+不能进入呼吸链。要保持糖酵解继续进行,NADH+H+必需再氧化。这时丙酮酸在细胞质基质中脱羧形成乙醛,乙醛在乙醛脱氢酶作用下,以 NADH+H+作为还原剂形成乙醇,或是丙酮酸在乳酸脱氢酶作用下,直接被NADH+H+还原为乳酸,从而使NADH+H+氧化为NAD+,再接受糖酵解过程脱下的氢。故1分子葡萄糖无论是进行了酒精发酵还是乳酸发酵,均只产生2分子ATP。

试题详情

(三)光合作用

光合作用大致可分为下列三大步骤:第一步,光能的吸收、传递和转换成电能的过程(通过原初反应完成);第二步电能转变为活跃的化学能过程(通过电子传递和光合磷酸化完成);第三步,活跃的化学能转变为稳定的化学能过程(通过碳同化完成)。第一、二两大步骤基本上属于光反应,第三大步骤属于暗反应(见下表)。

1.原初反应

原初反应包括光能的吸收、传递与转换过程。

根据其功能来区分,叶绿体片层结构上的色素又可区别为两种:一种是作用中心色素,少数特殊状态的叶绿素a分子属于此类,它具有光化学活性,既是光能的“捕捉器”,又是光能的“转换器”(把光能转换为电动势);另一种是聚光色素,没有光化学活性,只有收集和传递光能的作用,能把光能聚集起来,传到作用中心色素,绝大多数色素(包括大部分叶绿素a和全部叶绿素b、β-胡萝卜素、叶黄素、藻红蛋白和藻蓝蛋白)都属于聚光色素。

当波长范围为400-700nm的可见光照到绿色植物上时,聚光系统的色素分子吸收光量子被激发起来。由于叶绿体片层上的色素分子排列得很紧密,光能在色素分子间以诱导共振方式进行传递。能量可以在相同色素分子之间传递,也可以在不同色素分子之间传递。能量传递的效率很高,速度很快,这样就把大量的光能吸收、聚集,并迅速传递到作用中心色素分子,以进行光反应,这个反应部位称为作用中心。光合作用中心至少包括一个光能转换色素分子(P)、一个原初电子受体(A)和一个原初电子供体(D),才能导致电荷分离,将光能转换为电能,并且累积起来。作用中心色素分子一般用其对光线吸收高峰的波长作标志,例如P700代表光能吸收高峰在700的色素分子。作用中心的原初电子受体是指直接接受作用中心色素分子传来电子的物体。作用中心原初电子供体,是指以电子直接供给作用中心色素分子的物体。光合作用的原初反应是连续不断地进行的,因此必须有连续不断的最终电子供体和最终电子受体,构成电子的“源”和“流”。高等植物最终的电子供体是水,最终的电子受体是NADP+。下图表示光合作用的能量吸收、传递与转换的关系。

光合作用原初反应的能量吸收、传递与转换图解

粗的波浪箭头是光能的吸收,细的波浪箭头是能量的传递,直线箭头是电子传递。空心圆圈代表聚光性叶绿素分子,有黑点圆圈代表类胡萝卜素等辅助色素。P是作用中心色素分子,D是原初电子供体,A是原初电子受体,e是电子

从图中可以看出,聚光色素分子将光能吸收、传递至作用中心后,使作用中心色素(P)被激发而成为激发态,放出电子给原初电子受体(A),中心色素失去的电子可由原初电子供体(D)来补充,于是中心色素恢复原状,而原初电子供体被氧化。这样不断地氧化还原,就把电子不断地传递给原初电子受体,从而完成了光能转换为电能的过程。

2.电子传递和光合磷酸化

作用中心色素分子被激发后,把电子传递给原初电子受体,转为电能,再通过水的光解和光合磷酸化,经过一系列电子传递体的传递,最后形成ATP和NADPH+H+,从而将电能转化为活跃的化学能,并把化学能贮藏于这两种物质之中。

光合作用的光化学反应是由两个光系统完成的。由于现代研究技术的进展,已经直接从叶绿体中分离出下列两个光系统,即光系统Ⅰ(简称PSⅠ)和光系统Ⅱ(称PSⅡ)。每个光系统均具有特殊的色素复合体及一些物质。光系统Ⅰ的颗粒较小,直径为110埃,位于类囊体膜的外侧;光系统Ⅱ的颗粒较大,直径为175埃,位于类囊体膜的内侧。PSⅠ的光反应是长波光反应,其主要特征是NADP+的还原,其作用中心是P700。当PSI的作用中心色素分子P700吸收光能而被激发后,把电子供给 Fd(铁氧还蛋白),在NADP还原酶的参与下,Fd把NADP+还原成NADPH+H+。PSⅡ的光反应是短波光反应,其主要特征是水的光解和放氧。光系统Ⅱ的作用中心色素分子可能是P680,它吸收光能,把水分解,夺取水中的电子供给光系统Ⅰ。连接着两个光系统的电子传递链,是由一系列互相衔接着的电子传递物质(光合链)组成的。光合链中的电子传递体是质体醌(PQ)、细胞色素b559、Cytf和质体蓝素(PC)等。关于两个光系统的光化学反应和电子传递,如图下图所示。

光合作用中的两个光化学反应和电子传递

  Z–原初电子供体  Q–未知因素   Fd–含铁氧化还原蛋白(-0.43伏)

光合作用中,磷酸化和电子传递是偶联的,在光反应的电子传递过程中能产生ATP,即叶绿体在光作用下把无机磷和ADP转化成ATP,形成高能磷酸键,此称为光合磷酸化。光合磷酸化又分为非循环式光合磷酸化和循环式光合磷酸化两种类型。

光系统Ⅱ所产生的电子,即水光解释放出的电子,经过一系列的传递,在细胞色素链上引起了ATP的形成。同时把电子传递到PSⅠ上去,进一步提高能位,使H+还原 NADP+成为NADPH+H+。在这个过程中,电子传递不回到原来的起点,是一个开放的通路,故称非循环式光合磷酸化。其反应式为:

2ADP+2Pi+2NADP++2H2O2ATP+2NADPH+2H++O2

光系统Ⅰ产生的电子经过铁氧还蛋白和细胞色素b563等后,只引起ATP的形成,而不放氧,不伴随其他反应。在这个过程中,电子经过一系列传递后降低了位能,最后经过质体蓝素重新回到原来的起点,也就是电子的传递是一个闭合的回路,故称为循环式光合磷酸化。其反应式为:

ADP+PiATP

经过光反应后,由光能转变来的电能暂时贮存在ATP和NADPH中。叶绿体用ATP和NADPH+H+,便可在暗反应中同化二氧化碳,形成碳水化合物。因此有人把ATP和NADPH+H+称为还原力或同化力。还原1分子CO2,需要2个NADPH+H+和3个ATP,这3个ATP中有2个产生于非循环式光合磷酸化,还有1个产生于环式光合磷酸化。

3.碳的同化

从能量转换角度来看,碳同化是将ATP和NADPH+H+中的活跃的化学能,转换为贮存在碳水化合物中的稳定化学能。光合作用中,由CO2到己糖的总反应式可表示如下:

6CO2+18ATP+12NADPH+12H++12H2O→6–磷酸果糖(已糖)+18ADP+12NADP++17H3PO4

高等植物光合同化CO2的生化途径有卡尔文循环、C4途径和景天科酸代谢三种。其中以卡尔文循环最基本、最普遍,同时也只有这种途径具备合成淀粉等产物的能力。其他两种不够普遍,而且只能起固定、转运CO2的作用,单独不能形成淀粉等产物,所固定的CO2在植物体内再次释放出来,参与卡尔文循环。

(1)卡尔文循环:卡尔文循环是所有植物光合作用碳同化的基本途径,它能形成碳水化合物并输送到细胞质中。在这个循环中,由于大多数植物还原CO2的第一个产物是三碳化合物(如磷酸甘油酸),故又称为C3途径。卡尔文循环大致可分为核化、还原和再生三个阶段。

①羧化阶段:1,5–二磷酸核酮糖十CO2→3–磷酸甘油酸

②还原阶段:3–磷酸甘油酸→3–磷酸甘油醛

③再生阶段:3–磷酸甘油醛→6–磷酸果糖→5–磷酸核酮糖→1,5–二磷酸核酮糖(简称RuBP)

在此循环途径中,首先是RuBP在核酮糖二磷酸羧化酶催化下与CO2结合,生成3–磷酸甘油酸;3–磷酸甘油酸经磷酸化和脱氢两步反应,生成3–磷酸甘油醛;3–磷酸甘油醛分别经两条途径又重新回到RuBP,继续进行CO2的固定、还原等一系列反应,使循环反复进行。

卡尔文循环的产物不是葡萄糖,而是三碳的丙糖,即3–磷酸甘油醛(简写为PGALd),再由2个PGALd化合而成葡萄糖。这一循环的总账是:循环3次,固定3个CO2分子,生成6个PGALd,其中1个PGALd用来合成葡萄糖或其他糖类,这1个PGALd才是本循环的净收入,其余5个PGALd则用来产生3个分子的RuBP以保证再循环。所以每产生1分子葡萄糖需要2个分子的PGALd,即需要完成6次循环。从能量的变化来计算:生产一个可用于细胞代谢和合成的PGALd,需要9个ATP分子和6个NADPH分子参与。即:

3RuBP+3CO2  PGALd+3RuBP

PGALd在叶绿体中不能积累,需通过一系列转化形成淀粉,作为光合作用的产物,暂时贮存于叶绿体中,或输出叶绿体,在细胞质中转变为蔗糖。一般以淀粉和蔗糖作为光合作用的产物。

(2)C4途径:有些起源于热带的植物,如甘蔗、玉米、高梁等,除了和其他植物一样具有C3途径外,还有一条固定CO2的途径和C3途径联系在一起。这个途径的CO2受体是磷酸烯酸式丙酮酸,在叶肉细胞质中,在磷酸烯酸式丙酮酸(简写为PEP)羧化酶的催化下,固定CO2而生成草酰乙酸。由于还原CO2的第一个产物草酰乙酸是四碳化合物,所以这个途径叫C4途径。具有C4途径的这类植物叫C4植物。

C4植物叶片的结构很独特,含有2种不同类型的光合细胞,各具不同的叶绿体。围绕着维管束鞘细胞周围的排列整齐致密的叶肉细胞中的叶绿体,具有发达的基粒构造,而维管束鞘细胞的叶绿体中却只有很少的基粒,而有很多大的卵形淀粉粒。

在C3植物中,CO2是在叶肉细胞中通过卡尔文循环而被固定还原的。在C4植物的叶肉细胞中,CO2的接受体不是C3途径的RuBP,而是PEP。催化这一反应的酶是PEP羧化酶。CO2被固定后,不是生成三碳的磷酸甘油酸(简写成PGA),而是生成四碳的双羧酸,即草酸乙酸,草酸乙酸再被NADPH还原而成苹果酸。苹果酸离开叶肉细胞,进入维管束鞘细胞中,脱羧放出CO2,而成为丙酮酸。丙酮酸再回到叶肉细胞中,被转变为PEP,继续固定CO2。而苹果酸脱羧产生的CO2,在维管束鞘细胞中仍为RuBP所固定,而进入卡尔文循环。C4植物既有C4途径又有C3途径,这2个途径的关系如下图所示。

C4植物中的C4途径与C3途径的关系

在C4植物中,CO2在叶肉细胞中先按照C4途径被固定,然后在维管束鞘细胞中仍旧是通过卡尔文循环而被还原。由于在C4植物的C4途径中,PEP羧化酶对CO2的亲和力极强,甚至当CO2浓度降低时,也能固定CO2。所以C4途径是在 CO2浓度低时获取CO2的一种途径。生活在高强光和热带地区的多种植物,气孔经常是关闭的,这样可防止水分的过度散失,但同时也导致体内CO2浓度的降低。C4途径的存在,使CO2不致成为光合作用的限制因子,从而提高了光合效率。这通常是C4植物的生产效率明显高于C3植物的重要原因之一。C3植物生产效率较低的另一个原因是它们具有较强过程的光呼吸。

4.光呼吸

光呼吸是指绿色植物只在光照条件下才能吸收氧气,放出CO2的过程。光呼吸和一般生活细胞的呼吸作用(通过线粒体释放CO2的呼吸作用)显著不同,它是在光刺激下绿色细胞释放CO2的现象。光呼吸的高低。是指植物在光合作用下释放CO2的多少,这样释放的CO2,实际上是植物在光合作用过程中同化的CO2,它往往将光合作用已固定的20%- 40%的碳变成CO2再释放出来。显然这是一个消耗过程,对积累光合产物很不利。

光呼吸的底物是乙醇酸。乙醇酸来自叶绿体,叶绿体中的RuBP羧化酶既是羧化酶,催化CO2与RuBP结合,又是加氧酶,催化O2与RuBP结合。在CO2分压低、氧分压高时,这个酶催化O2与RuBP结合而生成三碳的3–PGA和二碳的2–磷酸乙醇酸。2–磷酸乙醇酸水解而成乙醇酸和无机磷酸。乙醇酸进入过氧化物体,在这里被氧化,其产物进入线粒体,在这里释放出CO2,这就是光呼吸的全过程。

试题详情

(二)矿质元素的吸收和运输

1.植物细胞对矿质元素的吸收

植物细胞吸收矿质元素的方式有三种:被动吸收、主动吸收和胞饮作用。其中被动吸收和主动吸收是植物细胞吸收矿质元素的主要方式。

(1)被动吸收

被动吸收:是指由于扩散作用或其他物理过程而进行的吸收,是不需要消耗代谢能量的,故又称非代谢性吸收。

①简单扩散:扩散作用是指气体分子、溶剂分子、溶质分子从浓度高的部位向低浓度的部位均匀分布的趋向。当外界溶液的浓度大干细胞内部溶液浓度时,外界溶液中的溶质便扩散进入细胞内,当细胞内外的浓度差大时,细胞大量吸收物质,但随着浓度差变小,吸收也随之减少,直至细胞内外浓度达到平衡为止。所以浓度差是决定细胞靠扩散作用吸收物质的主要因素。

②杜南平衡:杜南平衡是一种特殊的积累离子的现象。杜南平衡的结果是膜两侧某离子的浓度不相等,但也达到了平衡。植物细胞的质膜是一种半透膜。细胞内含有许多带电荷的不能扩散到细胞外的大分子化合物(如蛋白质,R),成为不扩散离子,它们可以与阳离子形成盐类(如蛋白质的钾盐,KR),设其浓度为Ci,把这样的细胞放在浓度为C。的KCl溶液中,由于细胞内没有Cl,所以Cl沿着浓度梯度由外界溶液扩散入细胞内,同时K+也进入细胞内,以保持电中性。由于R不能向细胞外扩散,使得细胞内的K+被保留在细胞内。经过一段时间后,细胞内外离子扩散速度相等,达到平衡状态,此时,细胞内可扩散负离子和正离子浓度的乘积等于细胞外正负离子浓度乘积。即:

[K+]×[Cl]=[K+]×[Cl]

由于细胞内有部分可扩散正离子被不扩散的负离子吸引,所以扩散平衡时,细胞内K+浓度大于细胞外K+的浓度,呈现离子积累现象,此时细胞外Cl的浓度大于细胞内Cl浓度。这种离子积累不需要消耗能量。

(2)主动吸收

在生物膜上,有一类专门运送物质的蛋白质大分子(称运输酶、或透过酶),能有选择性的把膜外的物质透过膜送到膜内,也可把膜内物质运送到膜外。这种物质转运有两个特点:①需要消耗呼吸作用所提供的能量,且被转运的离子或分子数量与所消耗的能之间有一定的量的关系;②转运的速度超过扩散的速度;当转运达到最终的稳衡状态时,膜两侧物质的浓度不相等。这种利用呼吸释放的能量做功而逆着浓度梯度快速吸收离子的过程称为细胞的主动吸收。凡是影响呼吸作用的因素,都会影响细胞的主动吸收。

2.植物吸收矿质元素的特点

(1)离子的选择吸收

植物从环境中吸收离子时是具有选择性的,即吸收离子的数量不与环境溶液中离子浓度成正比。例如,池塘水中K+的浓度较低,但生长在池中的丽藻液泡中积累的K+浓度很高。海水中Na+浓度很高,但生长在海水中的法囊藻液泡中Na+浓度比较低。这种选择性吸收不仅表现在对不同的盐分吸收量不同,而且对同一盐的阳离子和阴离子吸收量也不相同。例如,供给(NH4)2SO4时,根对NH4+吸收多于SO42,所以溶液中留有许多,使溶液的氢离子浓度增大,这种盐称为生理酸性盐。大多铵盐属于这类盐。相反,NaNO3和Ca(NO3)2属生理碱性盐。此外,还有一类化合物的阴离子和阳离子几乎以同等速度被极吸收,对土壤溶液的酸碱性不产生影响,这类盐称为生理中性盐,如NH4NO3

(2)单盐毒害和离子对抗

如果将植物培养在只含一种金属离子的溶液中,即使这种离子是植物生长发育所必需的,如K+,而且在培养液中的浓度很低,植物也不能正常生活,不久即受害而死。这种由于溶液中只含有一种金属离子而对植物起毒害作用的现象称为单盐毒害。如果  在能引起毒害作用的溶液中加入另一种矿质离子,其对植物的毒害作用即能减弱或消失,这种离子间能够相互消除毒害的现象称为离子对抗。如在KCl溶液中加入少量的 Ca2+,则K+对植物就不产生毒害作用,即Ca2+能对抗K+。植物只有在含有适当比例的多种盐的溶液中,才能很好的生长,因为这时各种离子的毒害作用已基本上被消除。也就是说,这种溶液既能保证植株有良好的充足的矿质营养,又对植物无毒害效应,这种溶液就称为平衡溶液。相对来说,土壤溶液就是平衡溶液。

值得注意的是:并不是任何一种其他离子的存在都能对抗由于某一种离子而引起的毒害作用。如K+、Na+之间就不存在对抗作用,因为二者对原生质的影响是一致的。而Ca2+与它们的作用正相反,故Ca2+与K+、Na+可以产生拮抗。同样Ba2+不能对抗Ca2+和Mg2+,原理也在于此。

3.矿质元素在植物体内的运输

根部吸收的矿质元素,有一部分留在根内,大部分运输到植物体的其他部分。根部吸收的无机氮大部分在根内转变为有机氮化合物。氮的主要运输形式是氨基酸(天冬氨酸)和酪氨(天冬酰氨和谷氨酰氨),还有少量以NO3形式向上运输。磷主要以H2PO4或HPO42形式运输,也有少量磷在根部转变为有机磷向上运输。硫的运输形式主要是SO42,也有少量硫以蛋氨酸或谷胱甘肽之类的有机硫形式运输。金属离子都以离子状态运输。

根部吸收的矿质元素进入导管后,沿木质部随着蒸腾流向上运输。叶片吸收的矿质元素在茎部主要是经韧皮部向上向下运输,也可从韧皮部横向运输到木质部,再向上运输。

有些矿质元素进入植物体后形成难溶解的稳定化合物,而被固定下来,不能移动,只能利用一次。最典型的元素是钙,其次是铁、锰等。这类元素在植物体内的分布特点是器官越老含量越高。有些元素在植物体内可多次利用,即该类元素形成化合物后,又可被分解,运输到其他需要的器官去。被再利用的元素中以氮、磷最为典型。

试题详情

(一)水分的吸收、运输

1.自由能和水势

当把一小块高锰酸钾结晶投入到一盛有纯水的烧杯中时,高锰酸钾分子会迅速地由结晶处向烧杯中的其他地方迁移。这种迁移之所以能够发生,完全是由于结晶与烧杯中的其他地方存在着化学势差的结果。化学势就是在恒温恒压条件下,一摩尔的物质分子所具有的自由能,自由能则是在恒温恒压条件下能够用于做功的能量。所以化学势就是指物质分子能够用于做功的能量的度量。其大小与物质的浓度或纯度呈正相关关系,并且能够指示物质分子发生反应或产生运动的方向和限度。在上述系统中,高锰酸钾分子迁移消耗的就是高锰酸钾分子的化学势或者说就是高锰酸钾分子的自由能。正因为如此,高锰酸钾分子也只能由化学势较高的结晶向化学势较低的其他地方迁移,直到烧杯各处高锰酸钾的化学势都相等为止。这种物质分子顺着化学势梯度或浓度迁移的现象就叫扩散。化学势用μ来表示,单位是耳格/摩尔或达因·厘米 / 摩尔。

在上述系统中高锰酸钾分子扩散的同时,水分子也在扩散,消耗的是水的化学势,是水中能够用于做功的能量度量。其大小当然能够指示水分子发生反应或产生运动的方向和限度,包括植物体内的水分运动。但是,任何物质分子的化学势的绝对值并不容易测定,水的化学势亦如此。我们通常所说的水的化学势实际上是一个差值,是系统中水的化学势与0℃、1.013×105 Pa下纯水的化学势之差。尽管纯水的化学势的绝对值也不易测定,但人们可以规定一个值来作为纯水的化学势,其他溶液的水的化学势就通过与纯水的化学势的值进行比较而得到。

但是,在植物生理学上,一般并不以水的化学势差的大小来指示水分运动的方向和限度,而是以水势的大小来指示的。水势就是每偏摩尔体积水的化学势差,就是水的化学势差被水的偏摩尔体积来除所得的商。即:

式中Ψ表示的是水势;μw表示的是系统中水的化学势;μw0表示的是纯水的化学势;Δμ表示的是化学势差;表示的是系统中水的偏摩尔体积。现举一例来说明。

在20℃、1.013×105Pa下,一摩尔纯水的体积是18.09mL,一摩尔纯乙醇的体积是58.35mL,但二者相混合后的体积并不等于18.09+58.35=76.44mL,而是74.40mL。就是说在这个系统中,一摩尔的水所体现出来的体积已不再是18.09mL(而是17.0mL),一摩尔的乙醇所体现出来的体积也不再是58.35mL(而是57.40mL)。这17.0mL和57.40mL分别是水和乙醇在此混合物中此条件下的偏摩尔体积。

水势的大小决定于化学势差的大小,纯水的化学势最大,并规定在0℃、1.013×105Pa下为0,所以纯水的水势也最大,在0℃、1.013×105Pa下也为0。其他的任何溶液(在开放系统中)都由于溶质的存在,降低了水的自由能而使水的化学势都小于纯水,全为负值。水势当然也比纯水小,也全为负值。

水势的大小能够指示水分发生反应或产生运动的方向和限度,并且与化学势所指示的完全相同,无论在植物体外还是在植物体内,水分总是顺着水势梯度由高水势流向低水势区。水势的单位是压力单位,达因 / 厘米2,这可由ψ=Δμ/ 推出,通常以帕斯卡(pa)来表示。

2.植物细胞的水势与渗透吸水

成熟的植物细胞外为纤维素和果胶质组成的细胞壁,中央有一个大的液泡,细胞壁和液泡之间则是细胞的原生质体。从物质透过角度讲,细胞壁是一个完全的透性膜,水分和溶质都可以自由地透过。而原生质膜和液泡膜则是分别透性膜。而且原生质膜和液泡膜之间的中质也并非是任何物质都容易透过的结构。这样我们就有充分的理由将细胞的整个原生质体(原生质膜、液泡膜和中质)看做是一个分别透性膜。液泡中是具有一定渗透势的溶液,那么植物细胞所处的环境溶液的情况就不外乎三种。即环境溶液的水势高于细胞的水势(高水势液),环境溶液的水势低于细胞的水势(低水势液),环境溶液的水势与细胞的水势相等(等水势液)。但不论处在何种情况下,植物细胞与外界溶液之间都能够发生渗透作用,只不过在第三种情况下,由于细胞内外无水势差的存在,外观上没有水分进出细胞的现象发生。所以说一个成熟的植物细胞与外界环境溶液共同构成了一个渗透系统,能够发生渗透作用。植物细胞以渗透吸水为主,吸水的动力来自细胞内外的水势之差,那么,植物细胞的水势又该如何计算呢?

成熟的植物细胞中央有大的液泡,其内充满着具有一定渗透势的溶液,所以渗透势肯定是细胞水势的组成之一,它是由于液泡中溶质的存在而使细胞水势的降低值。因此又称为溶质势,用ψs 表示。由于纯水的渗透势最大,并规定为0,所以任何溶液的渗透势都比纯水要小,全为负值。当细胞处在高水势溶液中时,细胞吸水,体积扩大,由于细胞原生质体和细胞壁的伸缩性不同,前者大于后者,所以细胞的吸水肯定会使细胞的原生质体对细胞壁产生一种向外的推力,即膨压。反过来细胞壁也会对细胞原生质体、对细胞液产生一种压力,这种压力是促使细胞内的水分向外流的力量,这就等于增加了细胞的水势。这个由于压力的存在而使细胞水势的增加值就称为压力势,用ψp表示。其方向与渗透势相反,一般情况下为正值。此外,细胞质为亲水胶体,能束缚一定量的水分,这就等于降低了细胞的水势。这种由于细胞的胶体物质(衬质)的亲水性而引起的水势降低值就称为细胞的衬质势,以ψm表示。所以说,植物细胞的吸水不仅决定于细胞的渗透势ψs,压力势ψp,而且也决定于细胞的衬质势ψm。一个典型的植物细胞的水势应由三部分组成,即ψw=ψs+ψp+ψm。

从作用效果看,ψs和ψm是使水分由细胞外向细胞内流的力量;ψp则是使水分由胞内向外渗的力量;就是说ψs和ψm的符号与ψp的符号相反,ψs和ψm为负,而ψp为正。

理论上细胞的水势ψw应由ψs、ψp和ψm三部分组成,但ψs、ψp和ψm在细胞水势中所占的比例则是随着细胞的发育时期及细胞所处的状态的改变而变化的。就ψm来讲,干燥种子和未形成液泡的细胞中,ψm是一个很大的负值;而在有液泡的细胞中,由于细胞的衬质部分已被水饱和,ψm等于零或接近于零,其绝对值很小(<0.1),相对于绝对值很大的水势来讲,就十分的微不足道了。因此,在计算有液泡细胞水势的时候,ψm通常可以省掉。即有液泡细胞的水势可以用公式ψw=ψs+ψp进行表示和计算。当ψw低于外界溶液时,细胞即可吸水。

在一般情况下,细胞的ψp为正值,但处于强烈蒸腾环境中的细胞的ψp为负值,而不为正值。细胞蒸腾失水,细胞体积缩小,最后可失去膨压而达到萎蔫的程度,但此时一般并不能引起质壁分离,原因是水与细胞壁的附着力很强,这样在原生质体收缩时细胞壁被向里拉,甚至发生褶皱变形。同时,细胞壁产生的反作用力使原生质体和细胞液处于张力的状态。张力相当于负的压力;在计算水势时应取负值。因此,在产生张力时,细胞的水势将变得比ψs更负。

3.根系吸水及水分沿导管或管胞上升的动力

植物体水分的获得主要借助于根系对土壤中水分的吸收。根系的吸水方式有两种,即主动吸水和被动吸水。主动吸水是由于根本身的生理活动而引起的水分吸收,与地上部分的活动无关,吸水动力是根压。被动吸水由蒸腾作用而引起,而与根系的活动无关,吸水的动力是蒸腾拉力。那么,根压和蒸腾拉力是怎样产生的呢?

关于根压产生的机制现在还不很清楚,一般是用渗透理论来解释。为更好地理解这个理论,必须首先了解植物体的结构。

植物体从空间上可分为三个部分,即共质体、质外体和液泡。共质体是指植物体中所有细胞中活的部分,即是指整个植物体的原生质总体。由于各细胞原生质之间有许多胞间连丝相连,所以共质体是一个连续的系统或体系。质外体则是指细胞壁、细胞间隙和木质部导管等原生质体以外的部分。水分和溶质可以在其中自由扩散。和共质体不同,质外体是不连续的,由于内皮层凯氏带的存在,内皮层就将质外体分隔成为两个区域,其一在内皮层外,包括皮层部分的细胞壁、细胞间隙,这部分可以和土壤溶液之间保持水分和溶质的扩散平衡。另一区域在中往内,包括中柱部分的细胞壁、细胞间隙及成熟的导管。内外两部分质外体之间的水分和溶质的交流,都只有通过内皮层细胞原生质体部分来进行。液泡由于有液泡膜和原生质体隔开,所以它既不属于质外体,也不属于共质体,而且它们也不连续成整体。

渗透理论认为:土壤中含有丰富的离子,在质外体的外部(皮层),离子随土壤溶液进入质外体直至内皮层,溶液中的离子可被活细胞主动吸收,即由质外体进入共质体。在共质体中,这些离子可以通过胞间连丝从一个细胞运至另一个细胞,通过内皮层进入中柱的活细胞。之后细胞中的离子又被动地扩散到导管中,即由共质体进入质外体。其结果,内皮层以外的质外体离子浓度降低,水势增高;而内皮层以内的质外体离子浓度增高,水势降低。这样内外质外体之间就形成了一个水势梯度,于是水经过内皮层的渗透作用而进入中往,进入导管,使导管内产生一种静水压力即根压,水分即沿导管上升。

蒸腾拉力是由于蒸腾作用而产生的。由于蒸腾,靠近气孔下腔的叶肉细胞含水量减少。水势降低,向相邻细胞吸取水分,当相邻细胞水势减低时,转向其相邻细胞吸水,如此依次传递直至向导管吸水。这就犹如造成了一种将导管中的水向上拉的力量,这种由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量就称为蒸腾拉力。主动吸水和被动吸水并存,但二者在根系吸水过程中的比重却很不相同。一般被动吸水占有很大的比重,主动吸水很少。所以蒸腾拉力是根系吸水和水分沿导管或管胞上升的主要动力。这里就产生了一个问题,蒸腾拉力将导管中的水柱向上拉,同时水柱本身的重力又将水柱向下拖,水柱的两端同时受到上拉下拖两种力量的作用,使水柱处于紧张状态,产生张力,水柱就有发生中断的趋势,而导管中水柱的连续性对根系的吸水和水分上升来讲又是必要的。那么,在这种情况下,导管中的水柱如何能保持连续而不发生中断呢?众所周知,水分子与水分子之间的内聚力很大,可达-300×105Pa,同时水分子与导管或管胞内纤维素分子之间还有强的附着力,它们远远大于水柱的张力(-5--30×105Pa)。所以导管或管胞中的水柱可以保持连续,保证在蒸腾作用进行时木质部中的水分能不断向上运输。这种以水分子的内聚力大于张力来解释水分上升的学说称为内聚力学说,也称为蒸腾--内聚力--张力学说,是19世纪末爱尔兰人迪克松提出的。

试题详情


同步练习册答案