题目列表(包括答案和解析)
3.如图,弦AC,BD相交于E,且AB,BC,CD的弧长相等,∠AED=30°,则∠AED的度数是( )
(A)150° (B) 105° (C) 120° (D) 140°
2.一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为( )
(A)16cm或6cm, (B)3cm或8cm (C)3cm (D)8cm
1.在⊿ABC中,∠C=90°,AB=3cm,BC=2cm,以点A为圆心,以2.5cm为半径作圆,则点C和⊙A的位置关系是( )(A)C在⊙A 上 (B)C在⊙A 外 (C)C在⊙A 内 (D)C在⊙A 位置不能确定。
5.反证法的步骤。
4.注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。(4)等弧的概念等。
3.圆的有关性质:同(等)圆中半径相等、直径相等;直径是半径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;圆心角、圆周角与所对的弧的度数关系;圆内接四边形的性质定理。
2.确定一个圆的条件,即圆心、半径(直径);不在同一直线上三点。一个圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一。
1.圆的点集定义及点和圆的位置关系
15.(2004年河南)如图5,已知A、B、C、D、E均在⊙O上,且AC为
⊙O的直径,则∠A+∠B+∠C=_____________度.
14.(2004年杭州)直线AB交圆于A,B,点M在圆上,点P在圆外,且点M,P在AB的同侧,∠AMB=50º。设∠APB=,当点P移动时,求的变化范围,并说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com