题目列表(包括答案和解析)
6. 已知:PA、PB切⊙O于A、B,C是弧AB上一点,过点C的切线DE交PA于D,交PB于E,ΔPDE 周长为 。
5. 已知:等腰梯形ABCD外切于为⊙O,AD∥BC,若AD=4,BC=6,AB=5,则⊙O的半径的长为 。
4. 已知⊙O的直径是15 cm,若直线L与圆心的距离分别是①15 cm;②③7.5 cm;③5 cm那么直线与圆的位置关系分别是 ; ; 。
3. 设⊙O的半径为r,点⊙O到直线L的距离是d,若⊙O与L至少有一个公共点,则r与d之间关系是 。
2. RtΔABC中,∠C=90°,AC=6,BC=8,则斜边上的高线等于 ;若以C为圆心作与AB相切的圆,则该圆的半径为r= ;若以C为圆心,以5为半径作圆,则该圆与AB的位置关系是 。
1. 已知点M到直线L的距离是3cm,若⊙M与L相切。则⊙M的直径是 ;若⊙M的半径是3.5cm,则⊙M与L的位置关系是 ;若⊙M的直径是5cm,则⊙M与L的位置是 。
6. 如图11,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,
CB⊥AB,G是直线CD上一点,∠ADG=∠ABD。
求证:AD·CE = DE·DF
说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你
把探索过程中的某种思路过程写出来(要求至少写3步);
⑵在你经历说明⑴的过程之后,可以从下列①、②、③中
选取一个补充或更换已知条件,完成你的证明。
注意:选取①完成证明得8分;
选取②完成证明得6分;
选取③完成证明得4分。
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°。
5.(2004年本溪)已知:射线OF交⊙O于点B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E。
(1)图a是点P在圆内移动时符合已知条件的图形,请你在图b中画出点P在圆外移动时符合已知条件的图形;(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较,写出一条与△DPE的边、角或形状有关的规律;(3)在点P移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,
并写出自变量x的取值范围。
4.已知:AB是⊙O的直径,AC和BD都是⊙O切线,CD切⊙O于E,EF⊥AB,分别交AB,AD于E、G,求证:EG=FG。
3. 如图,梯形ABCD中,AD∥BC,AB=CD,⊙O分另与AB、BC、CD、AD相切于E、F、G、H,求证:
⊙O的直径是AD,BC的比例中项。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com