题目列表(包括答案和解析)
1.利用直角三角形边角之间的关系来解直角三角形,最主要的是记住定义。譬如说,我们要求直角三角形中一个锐角的度数,需根据已知条件是这个角的哪些边来选择函数定义,若已知直角三边形的一个锐角和一边长求另一边长也是如此.
(二)1.了解平面直角坐标系的有关概念,会由点的位置确定点的坐标,会由点的 坐标确定点的位置.
2.理解函数的意义,能根据一个具体的函数解析式,确定自变量的取值范围, 并会由自变量的值求出函数值.
3.掌握正比例函数、反比例函数、一次函数、二次函数的概念及性质,会画出 图象.
4.能根据不同条件,用待定系数法求函数解析式.
(一)1.理解锐角三角函数定义,会用锐角三角形定义列出函数关系式解直角三角形.
2.了解锐角三角函数的四个同角间的函数恒等式,并会解一些相关的题目.
3.理解锐角三角函数的性质,会比较在某个范围内正弦和正弦,正弦和余弦, 正切和正切,正切和余切的大小,及利用函数值的大小判断角的大小.
4.熟记特殊角的三角函数组,并会准确的计算.
5.会用解直角三角形的有关知识,解某些实际问题.
28.如图甲:ACB与DCE是全等的两个直角三角形,其中ACB=DCE=900,AC=4,BC=2,点D、C、B在同一条直线上,点E在边AC上.
(1)直线DE与AB有怎样的位置关系?请证明你的结论;
(2)如图乙:若DCE沿着直线DB向右平移多少距离时,点E恰好落在边AB上,求平移距离DD′,;
(3)在DCE沿着直线DB向右平移的过程中,使DCE与ACB的公共部分是四边形,设平移过程中的平移距离为,这个四边形的面积为,求与的函数关系式,并写出它的定义域.
27.如图,已知二次函数的图像开口向下,与x轴的一个交点为B,顶点A在直线上,O为坐标原点。
(1)证明:△AOB是等腰直角三角形;
(2)若△AOB的外接圆C的半径为1,求该二次函数的解析式;
(3)对题(2)中所求出的二次函数,在其图像上是否存在点P(点P与点A不重合),使得△POC是以PC为腰的等腰三角形,若存在,请求出点P的坐标,若不存在,请说明理由。
26.已知抛物线(其中a、b、c都不等于0),它的顶点P的坐标是轴的交点是M(0,c). 我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)求抛物线(其中a、b、c都不等于0)的伴随抛物线和伴随直
线的解析式;
(2)请直接写出抛物线的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式 ,
伴随直线的解析式 ;
(3)若一条抛物线的伴随抛物线和伴随直线分别是,则这条抛物线的解析式是 ;
25.据2006年3月4日的<<解放日报>>报道,上海市就业促进中心发布了本市劳动者职业流
动周期分析报告,该报告说2005年上海劳动者的平均职业流动周期为46.6个月,也就是说平
均每位劳动者在一家单位连续工作近4年.下面是“不同学历劳动者的职业流动周期”与“不
同年龄段劳动者的职业流动周期”的统计图,请根据图中的有关信息回答下列问题:
(1)从学历分析来看,2004年不同学历劳动者的职业流动周期的中位数是___________个月,2005年不同学历劳动者的职业流动周期的中位数是________个月,本市劳动者职业流动周期随着学历的增高呈_________趋势(选择“上升”或“下降”);
(2)从年龄分析来看,本市劳动者职业流动周期随着年龄的增大呈_________趋势(选择“上升”或“下降”),2005年的职业流动周期与2004年比较,职业流动的周期_______了(填“缩短”或“延长”), 职业流动周期低于20个月的劳动者年龄范围__________;
(3)本市劳动者,学历为________的职业流动周期最短,年龄范围为_________的职业流动周期最长;
24.2006年3月15日, 深受海内外关注的磁浮铁路沪杭线交通项目获国务院批准.该项目
预计将于2008年建成,建成后,上海至杭州的铁路运行路程将由目前的200千米缩短至175
千米, 磁浮列车的设计速度是现行特快列车速度的3.5倍,运行时间将比目前的特快列车运
行时间约缩短1.2小时,试求磁浮铁路沪杭线磁浮列车的设计速度是每小时多少千米?
23.如图,晚上,小亮在广场上乘凉.图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.
(1)请你在图中画出小亮在照明灯(P)照射下的影子;
(2)如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度.
22.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.
(1)试求袋中蓝球的个数.
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请画树状图或列表格,求两次摸到都是白球的概率.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com