题目列表(包括答案和解析)
2. 据统计,2005“超级女声”短信投票的总票数约326820000张,将这个数写成科学计数法是 ( )
A. B. C. D.
有一项是符合题目要求的)
1. 的值是
A. B. C. D.
26.(本题12分)某学习小组在探索“各内角相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形;
乙同学:我发现边数是6时,它也不一定是正多边形。
如右图,ΔABC是正三角形,AD=BE=CF,可以证明六边形ADBECF的各内角相等,但它未必是正六边形;
丙同学:我能证明,边数是5时,它是正多边形。我想,边数是7时,它可能也是正多边形。
……
(1)请你说明乙同学构造的六边形各内角相等。
(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如右图)是正七边形(不必写已知、求证)。
(3)根据以上探索过程提出你的猜想(不必证明)。
|
|
|
|
|
|
|
|
|
(3)若(1)的条件不变,当点C在劣弧AD上运动时,应再具备什么条件可使结论BG2=BF·BO成立?试写出你的猜想,并说明理由。
附加题:探究数学“黑洞” (10分)
“黑洞”原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再“爬”出来。无独有偶,数学中也有类似的“黑洞”,满足条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌。譬如:任意找一个3的倍数的数,先把这个数的每个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每个数位上的数字再立方,再相加,得到一个新数,然后把这个新数的每个数位上的数字再立方,求和,……,重复运算下去,就能得到一个固定的数T= ,我们称它为数字“黑洞”。
你愿意把得到上述结论的探究方法与他人交流吗?若愿意,请在横线上写出这个数并在下方简单写出你的探究过程。(结论正确且所写的过程敏捷合理可另加分。)
25.(本题12分)新华文具店的某种毛笔每支售价25元,书法练习本每本售价5元,该文具店为促销制定了两种优惠办法。
甲:买一支毛笔就赠送一本书法练习本;
乙:按购买金额打九折付款。
实验中学欲为校书法兴趣小组购买这种毛笔10支,书法练习本x(x≥10)本。
(1)请写出用甲种优惠办法实际付款金额y甲(元)与x(本)之间的函数关系式;
(2)请写出用乙种优惠办法实际付款金额y乙(元)与x(本)之间的函数关系式;
(3)若购买同样多的书法练习本时,你会选择哪种优惠办法付款更省钱;
我选答 题。
24.(本题12分)某校准备在甲、乙两家公司为毕业班学生制作一批纪念册。甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费。
(1)请写出制作纪念册的册数x与甲公司的收费y1(元)的函数关系式。
(2)请写出制作纪念册的册数x与乙公司的收费y2(元)的函数关系式。
(3)如果学校派你去甲、乙两家公司订做纪念册,你会选择哪家公司?
23.(本题10分)某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频率分布直方图。
请回答:
(1)该中学参加本次数学竞赛的有多少名同学?
(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?
(3)图中还提供了其它信息,例如该中学没有获得满分的同学等等。请再写出两条信息。
(在下面的24、25两题中任选做一题。若两题都答,按24题评分。)
22.(本题8分)下表是明明同学填写实习报告的部分内容:
题目 |
在两岸近似平行的河段上测量河宽 |
测量目标图示 |
|
测得数据 |
∠CAD=60° AB=20米 ∠CBD=45° ∠BDC=90° |
请你根据以上的条件,计算出河宽CD(结果保留根号)。
21.(本题8分)请用“○○、△△、=”(两个圆、两个等腰三角形、两条平行线段)为材料,在所给空白处,设计出一个独特且有意义的图形,并用简练的文字说明你的创意。
我的设计是: 我的创意是:
20.(本题8分)
我选答 题。
(在下面的19、20两题中任选做一题,若两题都答,按19题评分。)
19.(本题8分)解方程:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com