题目列表(包括答案和解析)

 0  44552  44560  44566  44570  44576  44578  44582  44588  44590  44596  44602  44606  44608  44612  44618  44620  44626  44630  44632  44636  44638  44642  44644  44646  44647  44648  44650  44651  44652  44654  44656  44660  44662  44666  44668  44672  44678  44680  44686  44690  44692  44696  44702  44708  44710  44716  44720  44722  44728  44732  44738  44746  447348 

2. 当x1<0,x2<0时,有-( x1+ x2)=2,即k+1=-2,k=-3…………………………(6分)

Δ=[-4(k+1)]2-16(k2+1)=32k  ………………………………………………………(7分)

k =1时,Δ>0符合题意;

k =-3时,Δ<0舍去。

所以,满足题意的k的值为1………………………………………………………(10分)

解法二:依题意,Δ=[-4(k+1)]2-16(k2+1)=32k≥0,即k≥0………………(2分)

于是x1+ x2=k+1>0………………………………………………………………(4分)

x1>0,x2>0……………………………………………………………………(7分)

由| x1|+| x2|=2,得x1+ x2=2

k+1=2,解得k=1。

所以,满足题意的k的值为1。

试题详情

1. 当x1>0,x2>0时,有x1+ x2=2,即k+1=2,k=1无解。

试题详情

22、(2004年龙岩)已知关于x的方程的两实根x1x2满足:| x1|+| x2|=2,试求k的值.

解法一:依题意,,所以x1x2同号……(2分)

试题详情

21、(连云港市2004)关于x的一元二次方程有实数根,则k的取值范围是 B

 (A)    (B)     (C)     (D)

试题详情

20、(连云港市2004)某种商品进价为a元/件,在销售旺季,商品售价较进价高30%;销售旺季过后,商品又以7折(即原售价的70%)的价格开展促销活动,这时一件该商品的售价为D                

(A) a元     (B)0.7 a元    (C)1.03 a元    (D)0.91a元 

试题详情

19、(陕西省2004)解方程:

解:去分母,得

试题详情

18、(陕西省2004)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是[  B ]

A.x2+130x-1400=0         B.x2+65x-350=0

C.x2-130x-1400=0         D.x2-65x-350=0

试题详情

17、(绍兴市2004)化简:⑴;⑵若m,n是方程x2-3x+2=0的两个实根,求第(1)小题中代数式的值.

(1)=.

(2)∵ m+n=3,m·n=2, ∴==.

试题详情

16、(绍兴市2004)已知一元二次方程的两个根满足,且a,b,c分别是△ABC的∠A,∠B,∠C的对边.若a=c,求∠B的度数.小敏解得此题的正确答案“∠B=120°”后,思考以下问题,请你帮助解答.

(1)    若在原题中,将方程改为,要得到∠B=120°,而条件“a=c”不变,那么应对条件中的的值作怎样的改变?并说明理由.

(2)    若在原题中,将方程改为(n为正整数,n≥2),要得到∠B=120°,而条件“a=c”不变,那么条件中的的值应改为多少(不必说明理由)?

(1)∵  ∠B=120°,a=c, ∴  b=a,△=5a2>0.

又∵ ==.  ∴ =.

(2)=.

试题详情

15、(2004年苏州)已知关于x的一元二次方程 ax2+x-a=0  ( a≠0 )     

(1)    求证:对于任意非零实数a,该方程恒有两个异号的实数根;

(2)    设x1、 x2是该方程的两个根,若∣x1∣+ ∣x2∣=4,求a的值。

(1)证明:∵⊿=1+4a2, ∴⊿>0  ∴方程恒有两个实数根

设方程的两根为x1,x2, ∵a≠0, ∴x1·x2= -1<0

∴方程恒有两个异号的实数根  

(2)∵x1·x2<0,  ∴∣x1∣+∣x2∣=∣x1 - x2∣=4 

 x1+x2(x1+x2)2  - 4x1 x2=16 

又∵x1+x2= -, ∴+4=16。∴a=±

试题详情


同步练习册答案