题目列表(包括答案和解析)
32.(2004. 天津卷)(本小题满分14分)
椭圆的中心是原点O,它的短轴长为,相应于焦点的准线与轴相交于点A,,过点A的直线与椭圆相交于P、Q两点。
(I) 求椭圆的方程及离心率;
(II)若求直线PQ的方程;
(III)设,过点P且平行于准线的直线与椭圆相交于另一点M,证明
。
(22)本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力。满分14分。
(I)解:由题意,可设椭圆的方程为
由已知得
解得
所以椭圆的方程为,离心率 。。。。。。。。。。。。。。。。。。。。。4分
(II)解: 由(I)可得
设直线PQ的方程为由方程组
得
依题意 得
设 则
①
②
由直线PQ的方程得 于是
③
④ 。。。。。。。。。。。。。。。。。。。。。8分
由①②③④得从而
所以直线PQ的方程为
或 。。。。。。。。。。。。。。。。。。。10分
(III)证明:由已知得方程组
注意解得 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12分
因故
而所以
。。。。。。。。。。。。。。。。。。。。。。。。。。。14分
31.解:(Ⅰ)依题意,可设直线AB的方程为 代入抛物线方程得
①
设A、B两点的坐标分别是 、、x2是方程①的两根.
所以
由点P(0,m)分有向线段所成的比为,
得
又点Q是点P关于原点的对称点,
故点Q的坐标是(0,-m),从而.
所以
(Ⅱ)由 得点A、B的坐标分别是(6,9)、(-4,4).
由 得
所以抛物线 在点A处切线的斜率为
设圆C的方程是
则
解之得
所以圆C的方程是
即
31.(2004.湖南理)(本小题满分12分)
如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点.
(I)设点P分有向线段所成的比为,证明:;
(II)设直线AB的方程是x-2y+12=0,过A、B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
30.本小题主要考查平面向量的概念、直线方程的求法、椭圆的方程和性质等基础知识,以及轨迹的求法与应用、曲线与方程的关系等解析几何的基本思想和综合解题能力. 满分12分.
(1)解法一:直线l过点M(0,1)设其斜率为k,则l的方程为
记、由题设可得点A、B的坐标、是方程组
|
|
将①代入②并化简得,,所以
于是
…………6分
设点P的坐标为则
消去参数k得 ③
当k不存在时,A、B中点为坐标原点(0,0),也满足方程③,所以点P的轨迹方
程为………………8分
解法二:设点P的坐标为,因、在椭圆上,所以
④ ⑤
④-⑤得,所以
当时,有 ⑥
并且 ⑦ 将⑦代入⑥并整理得 ⑧
当时,点A、B的坐标为(0,2)、(0,-2),这时点P的坐标为(0,0)
也满足⑧,所以点P的轨迹方程为
………………8分
(2)解:由点P的轨迹方程知所以
……10分
故当,取得最小值,最小值为时,取得最大值,
最大值为……………………12分
注:若将代入的表达式求解,可参照上述标准给分.
30.(2004. 辽宁卷)(本小题满分12分)
设椭圆方程为,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,
点P满足,点N的坐标为,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)的最小值与最大值.
29、(2004. 上海卷文科)圆心在直线x=2上的圆C与y轴交于两点A(0, -4),B(0, -2),则圆C的方程为 (x-2)2+(y+3)2=5 .
27、(2004.上海理)教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是 用代数的方法研究图形的几何性质 .
28、(2004. 上海卷文科)当x、y满足不等式组 |
2≤x≤4 |
时,目标函数k=3x-2y的最大值为6 . |
y≥3 |
||
x+y≤8 |
26、圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0, -4),B(0, -2),则圆C的方程为 (x-2)2+(y+3)2=5 .
25、(2004.上海理)设抛物线的顶点坐标为(2,0),准线方程为x=-1,则它的焦点坐标为 (5,0) .
24. (2004. 天津卷)如果过两点和的直线与抛物线没有交点,那么实数的取值范围是__________________
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com