题目列表(包括答案和解析)
4. “”是“函数
在区间
上为增函数”的
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
3. 过平行六面体任意两条棱的中点作直线, 其中与平面
平行的直线共有
A.4条 B.6条 C.8条 D.12条
2. 若数列满足:
, 且对任意正整数
都有
, 则
A.
B.
C.
D.
1. 函数的定义域是
A.
B.
C.
D.
21.(本小题满分14分)
设是函数
的一个极值点。
(Ⅰ)、求与
的关系式(用
表示
),并求
的单调区间;
(Ⅱ)、设,
。若存在
使得
成立,求
的取值范围。
点评:本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力。
解:(Ⅰ)f `(x)=-[x2+(a-2)x+b-a ]e3-x,
由f `(3)=0,得 -[32+(a-2)3+b-a ]e3-3=0,即得b=-3-2a,
则 f `(x)=[x2+(a-2)x-3-2a-a ]e3-x
=-[x2+(a-2)x-3-3a ]e3-x=-(x-3)(x+a+1)e3-x.
令f `(x)=0,得x1=3或x2=-a-1,由于x=3是极值点,
所以x+a+1≠0,那么a≠-4.
当a<-4时,x2>3=x1,则
在区间(-∞,3)上,f `(x)<0, f (x)为减函数;
在区间(3,―a―1)上,f `(x)>0,f (x)为增函数;
在区间(―a―1,+∞)上,f `(x)<0,f (x)为减函数。
当a>-4时,x2<3=x1,则
在区间(-∞,―a―1)上,f `(x)<0, f (x)为减函数;
在区间(―a―1,3)上,f `(x)>0,f (x)为增函数;
在区间(3,+∞)上,f `(x)<0,f (x)为减函数。
(Ⅱ)由(Ⅰ)知,当a>0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)],
而f (0)=-(2a+3)e3<0,f (4)=(2a+13)e-1>0,f (3)=a+6,
那么f (x)在区间[0,4]上的值域是[-(2a+3)e3,a+6].
又在区间[0,4]上是增函数,
且它在区间[0,4]上的值域是[a2+,(a2+
)e4],
由于(a2+)-(a+6)=a2-a+
=(
)2≥0,所以只须仅须
(a2+)-(a+6)<1且a>0,解得0<a<
.
故a的取值范围是(0,)。
20.(本小题满分14分)
设分别为椭圆
的左、右顶点,椭圆长半轴的长等于焦距,且
为它的右准线。
(Ⅰ)、求椭圆的方程;
(Ⅱ)、设为右准线上不同于点(4,0)的任意一点,若直线
分别与椭圆相交于异于
的点
,证明点
在以
为直径的圆内。
(此题不要求在答题卡上画图)
点评:本小题主要考查直线、圆和椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力。
解:(Ⅰ)依题意得 a=2c,=4,解得a=2,c=1,从而b=
.
故椭圆的方程为 .
(Ⅱ)解法1:由(Ⅰ)得A(-2,0),B(2,0).设M(x0,y0).
∵M点在椭圆上,∴y0=(4-x02).
1
又点M异于顶点A、B,∴-2<x0<2,由P、A、M三点共线可以得
P(4,).
从而=(x0-2,y0),
=(2,
).
∴·
=2x0-4+
=
(x02-4+3y02). 2
将1代入2,化简得·
=
(2-x0).
∵2-x0>0,∴·
>0,则∠MBP为锐角,从而∠MBN为钝角,
故点B在以MN为直径的圆内。
解法2:由(Ⅰ)得A(-2,0),B(2,0).设M(x1,y1),N(x2,y2),
则-2<x1<2,-2<x2<2,又MN的中点Q的坐标为(,
),
依题意,计算点B到圆心Q的距离与半径的差
-
=(
-2)2+(
)2-
[(x1-x2)2+(y1-y2)2]
=(x1-2) (x2-2)+y1y1 3
又直线AP的方程为y=,直线BP的方程为y=
,
而点两直线AP与BP的交点P在准线x=4上,
∴,即y2=
4
又点M在椭圆上,则,即
5
于是将4、5代入3,化简后可得-
=
.
从而,点B在以MN为直径的圆内。
19.(本小题满分10分)
在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。
(Ⅰ)、试问此次参赛学生总数约为多少人?
(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?
可共查阅的(部分)标准正态分布表
![]() |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
1.2 1.3 1.4 1.9 2.0 2.1 |
0.8849 0.9032 0.9192 0.9713 0.9772 0.9821 |
0.8869 0.9049 0.9207 0.9719 0.9778 0.9826 |
0.888 0.9066 0.9222 0.9726 0.9783 0.9830 |
0.8907 0.9082 0.9236 0.9732 0.9788 0.9834 |
0.8925 0.9099 0.9251 0.9738 0.9793 0.9838 |
0.8944 0.9115 0.9265 0.9744 0.9798 0.9842 |
0.8962 0.9131 0.9278 0.9750 0.9803 0.9846 |
0.8980 0.9147 0.9292 0.9756 0.9808 0.9850 |
0.8997 0.9162 0.9306 0.9762 0.9812 0.9854 |
0.9015 0.9177 0.9319 0.9767 0.9817 0.9857 |
点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。
解:(Ⅰ)设参赛学生的分数为,因为
-N(70,100),由条件知,
P(≥90)=1-P(
<90)=1-F(90)=1-
=1-
(2)=1-0.9772=0.228.
这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此,
参赛总人数约为≈526(人)。
(Ⅱ)假定设奖的分数线为x分,则
P(≥x)=1-P(
<x)=1-F(90)=1-
=
=0.0951,
即=0.9049,查表得
≈1.31,解得x=83.1.
故设奖得分数线约为83.1分。
18.(本小题满分12分)
如图,在棱长为1的正方体中,
是侧棱
上的一点,
。
(Ⅰ)、试确定,使直线
与平面
所成角的正切值为
;
(Ⅱ)、在线段
上是否存在一个定点Q,使得对任意的
,D1Q在平面
上的射影垂直于
,并证明你的结论。
点评:本小题主要考查线面关系、直线于平面所成的角的有关知识及空间想象能力和推理运算能力,考查运用向量知识解决数学问题的能力。
解法1:(Ⅰ)连AC,设AC与BD相交于点O,AP与平面相交于点,,连结OG,因为
PC∥平面,平面
∩平面APC=OG,
故OG∥PC,所以,OG=PC=
.
又AO⊥BD,AO⊥BB1,所以AO⊥平面,
故∠AGO是AP与平面所成的角.
在Rt△AOG中,tanAGO=,即m=
.
所以,当m=时,直线AP与平面
所成的角的正切值为
.
(Ⅱ)可以推测,点Q应当是AICI的中点O1,因为
D1O1⊥A1C1, 且 D1O1⊥A1A ,所以 D1O1⊥平面ACC1A1,
又AP平面ACC1A1,故 D1O1⊥AP.
那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直。
17.(本小题满分13分)
已知二次函数的图像经过坐标原点,其导函数为
,数列
的前n项和为
,点
均在函数
的图像上。
(Ⅰ)、求数列的通项公式;
(Ⅱ)、设,
是数列
的前n项和,求使得
对所有
都成立的最小正整数m;
点评:本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力。
解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x-2,得
a=3 , b=-2, 所以 f(x)=3x2-2x.
又因为点均在函数
的图像上,所以
=3n2-2n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-=6n-5.
当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()
(Ⅱ)由(Ⅰ)得知=
=
,
故Tn==
=
(1-
).
因此,要使(1-
)<
(
)成立的m,必须且仅须满足
≤
,即m≥10,所以满足要求的最小正整数m为10.
16.(本小题满分12分)
设函数,其中向量
,
,
,
。
(Ⅰ)、求函数的最大值和最小正周期;
(Ⅱ)、将函数的图像按向量
平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的
。
点评:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力。
解:(Ⅰ)由题意得,f(x)=a·(b+c)=(sinx,-cosx)·(sinx-cosx,sinx-3cosx)
=sin2x-2sinxcosx+3cos2x=2+cos2x-sin2x=2+sin(2x+
).
所以,f(x)的最大值为2+,最小正周期是
=
.
(Ⅱ)由sin(2x+)=0得2x+
=k.
,即x=
,k∈Z,
于是d=(,-2),
k∈Z.
因为k为整数,要使最小,则只有k=1,此时d=(―
,―2)即为所求.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com