题目列表(包括答案和解析)

 0  446800  446808  446814  446818  446824  446826  446830  446836  446838  446844  446850  446854  446856  446860  446866  446868  446874  446878  446880  446884  446886  446890  446892  446894  446895  446896  446898  446899  446900  446902  446904  446908  446910  446914  446916  446920  446926  446928  446934  446938  446940  446944  446950  446956  446958  446964  446968  446970  446976  446980  446986  446994  447348 

⑴、设集合,则

A.             B.

C.             D.

⑵、已知函数的图象与函数的图象关于直线对称,则

A.          B.

C.          D.

⑶、双曲线的虚轴长是实轴长的2倍,则

A.        B.       C.      D.

⑷、如果复数是实数,则实数

A.        B.      C.       D.

⑸、函数的单调增区间为

A.       B.

C.       D.

⑹、的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且,则

A.        B.      C.       D.

⑺、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是

A.       B.     C.       D.

⑻、抛物线上的点到直线距离的最小值是

A.        B.      C.        D.

⑼、设平面向量的和。如果向量,满足,且顺时针旋转后与同向,其中,则

A.           B.

C.            D.

⑽、设是公差为正数的等差数列,若,则

A.        B.      C.       D.

⑾、用长度分别为2、3、4、5、6(单位:)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为

A.    B.      C.      D.

⑿、设集合。选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有

A.     B.        C.       D.

普通高等学校招生全国统一考试

理科数学

第Ⅱ卷

试题详情

22、解:

(1)    将条件变为:1-,因此{1-}为一个等比数列,其首项为

1-,公比,从而1-,据此得an(n³1)…………1°

(2)    证:据1°得,a1·a2·…an

为证a1·a2·……an<2·n!

只要证nÎN*时有>…………2°

显然,左端每个因式都是正数,先证明,对每个nÎN*,有

³1-()…………3°

用数学归纳法证明3°式:

(i)           n=1时,3°式显然成立,

(ii)          设n=k时,3°式成立,

³1-()

则当n=k+1时,

³(1-())·()

=1-()-+()

³1-(+)即当n=k+1时,3°式也成立。

故对一切nÎN*,3°式都成立。

利用3°得,³1-()=1-

=1->

故2°式成立,从而结论成立。

试题详情

b2(x1-x2)2x+a2(y1-y2)2y=0

   

\b2x2+a2y2-b2cx=0…………(3)

2°当AB垂直于x轴时,点P即为点F,满足方程(3)

故所求点P的轨迹方程为:b2x2+a2y2-b2cx=0

(2)因为,椭圆  Q右准线l方程是x=,原点距l

的距离为,由于c2=a2-b2,a2=1+cosq+sinq,b2=sinq(0<q£)

=2sin(+)

当q=时,上式达到最大值。此时a2=2,b2=1,c=1,D(2,0),|DF|=1

设椭圆Q:上的点 A(x1,y1)、B(x2,y2),三角形ABD的面积

S=|y1|+|y2|=|y1-y2|

设直线m的方程为x=ky+1,代入中,得(2+k2)y2+2ky-1=0

由韦达定理得y1+y2,y1y2

4S2=(y1-y2)2=(y1+y2)2-4 y1y2

令t=k2+1³1,得4S2,当t=1,k=0时取等号。

因此,当直线m绕点F转到垂直x轴位置时,三角形ABD的面积最大。

22、(本大题满分14分)

已知数列{an}满足:a1,且an

(3)    求数列{an}的通项公式;

(4)    证明:对于一切正整数n,不等式a1·a2·……an<2·n!

试题详情

21、解:如图,(1)设椭圆Q:(a>b>0)

上的点A(x1,y1)、B(x2,y2),又设P点坐标为P(x,y),则

1°当AB不垂直x轴时,x1¹x2

试题详情

21、(本大题满分12分)

如图,椭圆Q:(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点

(3)    求点P的轨迹H的方程

(4)    在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),确定q的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?

试题详情

20、解法一:

(1)    方法一:作AH^面BCD于H,连DH。

AB^BDÞHB^BD,又AD=,BD=1

\AB==BC=AC  \BD^DC

又BD=CD,则BHCD是正方形,则DH^BC\AD^BC

方法二:取BC的中点O,连AO、DO

则有AO^BC,DO^BC,\BC^面AOD

\BC^AD

(2)    作BM^AC于M,作MN^AC交AD于N,则ÐBMN就是二面角B-AC-D的平面角,因为AB=AC=BC=\M是AC的中点,且MN¤¤CD,则BM=,MN=CD=,BN=AD=,由余弦定理可求得cosÐBMN=

\ÐBMN=arccos

(3)    设E是所求的点,作EF^CH于F,连FD。则EF¤¤AH,\EF^面BCD,ÐEDF就是ED与面BCD所成的角,则ÐEDF=30°。设EF=x,易得AH=HC=1,则CF=x,FD=,\tanÐEDF=解得x=,则CE=x=1

故线段AC上存在E点,且CE=1时,ED与面BCD成30°角。

解法二:此题也可用空间向量求解,解答略

试题详情

20、(本小题满分12分)

如图,在三棱锥A-BCD中,侧面ABD、ACD

是全等的直角三角形,AD是公共的斜边,

且AD=,BD=CD=1,另一个侧面是正三角形

(4)    求证:AD^BC

(5)    求二面角B-AC-D的大小

(6)    在直线AC上是否存在一点E,使ED与面BCD

成30°角?若存在,确定E的位置;若不存在,说明理由。

试题详情

19、解:

(1)    因为G是边长为1的正三角形ABC的中心,

所以  AG=,ÐMAG=

由正弦定理

则S1GM·GA·sina=

同理可求得S2

(2)    y=

=72(3+cot2a)因为,所以当a=或a=时,y取得最大值ymax=240

当a=时,y取得最小值ymin=216

试题详情

19、(本小题满分12分)

如图,已知△ABC是边长为1的正三角形,M、N分别是

边AB、AC上的点,线段MN经过△ABC的中心G,

设ÐMGA=a()

(3)    试将△AGM、△AGN的面积(分别记为S1与S2)

表示为a的函数

(4)    求y=的最大值与最小值

试题详情

18、解:(1)x的所有可能的取值为0,10,20,50,60

分布列为

x
0
10
20
50
60
P





(2)Ex=3.3

试题详情


同步练习册答案