题目列表(包括答案和解析)
22.(本小题满分14分)
如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.
(1)求△APB的重心G的轨迹方程.
(2)证明∠PFA=∠PFB.
[思路点拨]本题涉及解析几何中直线与抛物线的若干知识.
[正确解答](1)设切点A、B坐标分别为,
∴切线AP的方程为:
切线BP的方程为:
解得P点的坐标为:
所以△APB的重心G的坐标为 ,
所以,由点P在直线l上运动,从而得到重心G的轨迹方程为:
(2)方法1:因为
由于P点在抛物线外,则
∴
同理有
∴∠AFP=∠PFB.
方法2:①当所以P点坐标为,则P点到直线AF的距离为:
即
所以P点到直线BF的距离为:
所以d1=d2,即得∠AFP=∠PFB.
②当时,直线AF的方程:
直线BF的方程:
所以P点到直线AF的距离为:
,同理可得到P点到直线BF的距离,因此由d1=d2,可得到∠AFP=∠PFB.
[解后反思]解析几何主要的是点和曲线的位置关系、对称性,标准方程当中系数对位置的影响.圆锥曲线的定义和几何性质,解析几何的解答题往往是高档题,常常涉及的内容是求轨迹方程、直线和圆锥曲线的位置关系、对称、最值、范围.做这类题目一定要认真细心,提高自己的运算能力和思维能力.
21.(本小题满分12分)
已知数列
(1)证明
(2)求数列的通项公式an.
[思路点拨]本题考查数列的基础知识,考查运算能力和推理能力.第(1)问是证明递推关系,联想到用数学归纳法,第(2)问是计算题,也必须通过递推关系进行分析求解.
[正确解答](1)方法一 用数学归纳法证明:
1°当n=1时,
∴,命题正确.
2°假设n=k时有
则
而
又
∴时命题正确.
由1°、2°知,对一切n∈N时有
方法二:用数学归纳法证明:
1°当n=1时,∴;
2°假设n=k时有成立,
令,在[0,2]上单调递增,所以由假设
有:即
也即当n=k+1时 成立,所以对一切
(2)下面来求数列的通项:所以
,
又bn=-1,所以.
[解后反思]数列是高考考纲中明文规定必考内容之一,考纲规定学生必须理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.当然数列与不等式的给合往往得高考数学的热点之一,也成为诸多省份的最后压轴大题,解决此类问题,必须有过硬的数学基础知识与过人的数学技巧,同时运用数学归纳法也是比较好的选择,不过在使用数学归纳法的过程中,一定要遵循数学归纳法的步骤.
20.(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
[思路点拨]本题涉及立体几何线面关系的有关知识,
[正确解答]解法(一)
(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E
(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=,AD1=,
故
(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,
∴∠DHD1为二面角D1-EC-D的平面角.
设AE=x,则BE=2-x
解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)
(1)
(2)因为E为AB的中点,则E(1,1,0),从而,
,设平面ACD1的法向量为,则
也即,得,从而,所以点E到平面AD1C的距离为
(3)设平面D1EC的法向量
,∴
由 令b=1, ∴c=2,a=2-x,
∴
依题意
∴(不合,舍去), .
∴AE=时,二面角D1-EC-D的大小为.
[解后反思]立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求解角度和距离,在求此类问题中,尽量要将这些量处于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较好写出来.
19.(本小题满分12分)
A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设表示游戏终止时掷硬币的次数.
(1)求的取值范围;
(2)求的数学期望E.
[思路点拨]本题考查涉及概率等若干知识,理解的含义是解决本题的关键.
[正确解答](1)设正面出现的次数为m,反面出现的次数为n,则,
可得:
(2)
[解后反思]要想做对此类问题,要具备两个条件,首先要理解题目所涉及的知识,本题有一定的抽象性,如果你不理解题目,你就无从下手,第二要记牢这一类题目的做题步骤,做此类型题目,有时候步骤很重要的,严格按照书中例题的步骤完成是得到正确答案的保证.
18.(本小题满分12分)
已知向量.
是否存在实数若存在,则求出x的值;若不存在,则证明之.
[思路点拨]本题主要考查向量与三角,导数的综合题,正确化简f(x)是解该题的关健.
[正确解答]
[解后反思]本题是一道简单三角函数题,不过我们仍然在本题的解决过程中,发现这样一个问题,化简在解决数学过程中的重要地位,本题只要化简到位,那么在解决的过程会大大缩短,一切都变的简单起来,所以在解三角函数问题或其他的数学问题,能化简的,要尽量先化简.
17.(本小题满分12分)
已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3, x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式;
[思路点拨]本题主要考查求函数的解析式及含参分式不等式的解法.
[正确解答](1)将得
(2)不等式即为
即
①当
②当
③.
[解后反思]解不等式的过程实质上就是转化的过程,分式不等式转化成整式不等式,解分式不等式一般情况下是移项,通分,然后转化成整式不等式,对于高次不等式,借助数轴法,则简单,快捷,另外,
16.以下同个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若则动点P的轨迹为椭圆;
③方程的两根可分别作为椭圆和双曲线的离心率;
④双曲线有相同的焦点.
其中真命题的序号为 (写出所有真命题的序号)
[思路点拨]本题主要考查圆锥曲线的定义和性质主要由a,b,c,e的关系求得
[正确解答]双曲线的第一定义是:平面上的动点P到两定点是A,B之间的距离的差的绝对值为常数2a,且,那么P点的轨迹为双曲线,故①错,
由,得P为弦AB的中点,故②错,
设的两根为则可知两根互与为倒数,且均为正,故③对,
的焦点坐标(),而的焦点坐标(),故④正确.
[解后反思]要牢牢掌握椭圆,双曲线的第一定义,同时还要掌握圆锥曲线的统一定义,弄清圆锥曲线中a,b,c,e的相互关系.
15.如图,在直三棱柱ABC-A1B1C1中,
AB=BC=,BB1=2,,
E、F分别为AA1、C1B1的中点,沿棱柱的表面从E
到F两点的最短路径的长度为 .
[思路点拨]本题主要考查空间距离转化为平面距离.
[正确解答]分别延将E、F展开到同一平面内,则易得:,,或
比较可得,最小值为.
[解后反思]将平面图形空间化也是立体几何的另一种问题形式,在做立体几何中,许多问题都是空间图形进行平面化,努力将一个个空间图形,通过所学的几何知识,转化成平面图形,最后使用平面几何的若干知识解决,而本题却反其道而行之,所以在做法上就不能和上述的方法相同,但在本质上有许多相通之处,在这类题目中,尽量找出两者图形过程中的联系之处,哪些量变啦,哪些量没有变,然后解决起来,就会顺手多啦.
14.设实数x, y满足 .
[思路点拨]本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最值.
[正确解答]表示两点(0,0),A(x,y)的斜率
[解后反思]解题的关键是理解目标函数的几何意义,类似的你知道的几何意义吗?
13.若函数是奇函数,则a= .
[思路点拨]本题主要考查函数的奇偶性,由函数的奇偶性的定义可求得.
[正确解答]
解法1:由题意可知,,即,
因此,.
解法2:函数的定义域为R,又f(x)为奇函数,故其图象必过原点即f(0)=0,所以,得即推出答案
[解后反思]对数学概念及定理公式的深刻理解是解数学问题的关健,讨论函数的奇偶性,其前提条件是函数的定义域必须关于原点对称.
若函数f(x)为奇函数的图象关于原点对称.
若函数f(x)为偶函数的图象关于y轴对称.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com