题目列表(包括答案和解析)

 0  446827  446835  446841  446845  446851  446853  446857  446863  446865  446871  446877  446881  446883  446887  446893  446895  446901  446905  446907  446911  446913  446917  446919  446921  446922  446923  446925  446926  446927  446929  446931  446935  446937  446941  446943  446947  446953  446955  446961  446965  446967  446971  446977  446983  446985  446991  446995  446997  447003  447007  447013  447021  447348 

22、(本题满分18分)对定义域是的函数,规定:函数.

(1)若函数,写出函数的解析式;

(2)求问题(1)中函数的值域;

(3)若,其中是常数,且,请设计一个定义域为R的函数,及一个的值,使得,并予以证明.

见理21

试题详情

21、(本题满分16分)已知抛物线的焦点为F,A是抛物线上横坐标为4、且位于轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于轴,垂足为B,OB的中点为M.

(1)求抛物线方程;

(2)过M作,垂足为N,求点N的坐标;

(3)以M为圆心,MB为半径作圆M,当轴上一动点时,讨论直线AK与圆M的位置关系.

[思路点拨]本题考查直线与抛物线、直线与圆的位置关系等基础知识,考查运用解析几何的方法分析问和解决问题的能力.第(1)(2)问是定量分析,难度不大,而解决(3)的常规方法之一就是利用点M到直线AK的距离d与圆的半径比较为宜.

[正确解答] (1) 抛物线y2=2px的准线为x=-,于是4+=5, ∴p=2.

  ∴抛物线方程为y2=4x.

  (2)∵点A是坐标是(4,4), 由题意得B(0,4),M(0,2),

  又∵F(1,0), ∴kFA=;MN⊥FA, ∴kMN=-,

  则FA的方程为y=(x-1),MN的方程为y-2=-x,解方程组得x=,y=,

  ∴N的坐标(,).

(1)   由题意得, ,圆M.的圆心是点(0,2), 半径为2,

当m=4时, 直线AK的方程为x=4,此时,直线AK与圆M相离.

当m≠4时, 直线AK的方程为y=(x-m),即为4x-(4-m)y-4m=0,

圆心M(0,2)到直线AK的距离d=,令d>2,解得m>1

∴当m>1时, AK与圆M相离;

  当m=1时, AK与圆M相切;

  当m<1时, AK与圆M相交.

[解后反思]解答圆锥这部分试题需准确地把握数与形的语言转换能力,推理能力,本题计算量并不大,但步步等价转换的意识要准确无误.

试题详情

20、(本题满分14分)假设某市2004年新建住房面积400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,

(1)该市历年所建中低价层的累计面积(以2004年为累计的第一年)将首次不少于4780万平方米?

(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?

见理20

试题详情

19、(本题满分14分)已知函数的图象与轴分别相交于点A、B,(分别是与轴正半轴同方向的单位向量),函数.

(1)求的值;

(2)当满足时,求函数的最小值.

[思路点拨]本题是以向量为背景,解析法为手段,考查解析思想的运用和处理函数性质的方法,考查运算能力和运用数学模型的能力.

[正确解答] (1)由已知得A(,0),B(0,b),则={,b},于是=2,b=2. ∴k=1,b=2.

  (2)由f(x)> g(x),得x+2>x2-x-6,即(x+2)(x-4)<0, 得-2<x<4,

  ==x+2+-5

  由于x+2>0,则≥-3,其中等号当且仅当x+2=1,即x=-1时成立

  ∴的最小值是-3.

[解后反思]要熟悉在其函数的定义域内,常见模型函数求最值的常规方法.如型.

试题详情

18、(本题满分12分)在复数范围内解方程(为虚数单位).

[思路点拨]见理18.

[正确解答]原方程化简为,

  设z=x+yi(x、y∈R),代入上述方程得 x2+y2+2xi=1-i,

  ∴x2+y2=1且2x=-1,解得x=-且y=±,

  ∴原方程的解是z=-±i.

   [解后反思]见理18.

试题详情

17、(本题满分12分)已知长方体中,M、N分别是和BC的中点,AB=4,AD=2,与平面ABCD所成角的大小为,求异面直线与MN所成角的大小.(结果用反三角函数值表示)

[思路点拨]见理17.

[正确解答]联结B1C,由M、N分别是BB1和BC的中点,得B1C∥MN,

  ∴∠DB1C就是异面直线B1D与MN所成的角.

  联结BD,在Rt△ABD中,可得BD=2,又BB1⊥平面ABCD, ∠B1DB是B1D与平面ABCD所成的角, ∴∠B1DB=60°.

在Rt△B1BD中, B1B=BDtan60°=2,

又DC⊥平面BB1C1C, ∴DC⊥B1C,

在Rt△DB1C中, tan∠DB1C=,

∴∠DB1C=arctan.

即异面直线B1D与MN所成角的大小为arctan.

[解后反思]见理17.

试题详情

16、个不同的实数可得到个不同的排列,每个排列为一行写成一个行的数阵.对第,记.例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以,,那么,在用1,2,3,4,5形成的数阵中,等于(  )

A.-3600      B.1800      C.-1080      D.-720

见理12

试题详情

15、条件甲:“”是条件乙:“”的(  )

A.既不充分也不必要条件B.充要条件 C.充分不必要条件 D.必要不充分条件

[思路点拨]本题考查了充要条件的定义及其判定只要判断甲乙和乙甲的真假性,利用充要条件将条件乙进行化简是解决这类问题的关键.

[正确解答]解法1:甲乙:

甲:

因此是充要条件,选B

解法2:∵,∴选B

[解后反思]对命题的充要条件、必要条件可以从三个方面理解:①定义法,②等价法,即利用的等价关系,对于条件或结论是否定式的命题一般采用等价法,③利用集合间的包含关系判断:若则A是B的充分条件或B是A必要条件;若则A是B的充要条件,另外,对于确定条件的不充分性或不必要性往往用构造反例的方法来说明.

试题详情

14、已知集合,则等于(  )

A.        B.

C.        D.

见理14.

试题详情

13、若函数,则该函数在上是(  )

A.单调递减无最小值          B.单调递减有最小值

C.单调递增无最大值          D.单调递增有最大值

见理13

试题详情


同步练习册答案