题目列表(包括答案和解析)

 0  446885  446893  446899  446903  446909  446911  446915  446921  446923  446929  446935  446939  446941  446945  446951  446953  446959  446963  446965  446969  446971  446975  446977  446979  446980  446981  446983  446984  446985  446987  446989  446993  446995  446999  447001  447005  447011  447013  447019  447023  447025  447029  447035  447041  447043  447049  447053  447055  447061  447065  447071  447079  447348 

25.(福建卷)每次抛掷一枚骰子(六个面上分别标以数字

(I)连续抛掷2次,求向上的数不同的概率;

(II)连续抛掷2次,求向上的数之和为6的概率;

(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。

本小题主要考查概率的基本知识,运用数学知识解决实际问题的能力。满分12分。

解:(I)设A表示事件“抛掷2次,向上的数不同”,则

答:抛掷2次,向上的数不同的概率为

(II)设B表示事件“抛掷2次,向上的数之和为6”。

向上的数之和为6的结果有 5种,

答:抛掷2次,向上的数之和为6的概率为

试题详情

24.(北京卷)某公司招聘员工,指定三门考试课程,有两种考试方案.

方案一:考试三门课程,至少有两门及格为考试通过;

方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

假设某应聘者对三门指定课程考试及格的概率分别是0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.求:

(Ⅰ)该应聘者用方案一考试通过的概率;

(Ⅱ)该应聘者用方案二考试通过的概率.

解:记该应聘者对三门指定课程考试及格的事件分别为AB,C

P(A)=0.5,P(B)=0.6,P(C)=0.9.

(Ⅰ) 应聘者用方案一考试通过的概率

  p1=P(A·B·)+P(·B·C)+P(A··C)+P(A·B·C)

   =0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9

=0.03+0.27+0.18+0.27=0.75.

(Ⅱ) 应聘者用方案二考试通过的概率

  p2=P(A·B)+P(B·C)+ P(A·C)

   =×(0.5×0.6+0.6×0.9+0.5×0.9)=×1.29=0.43

试题详情

23.(北京卷)某公司招聘员工,指定三门考试课程,有两种考试方案.

   方案一:考试三门课程,至少有两门及格为考试通过;

   方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

   假设某应聘者对三门指定课程考试及格的概率分别是,且三门课程考试是否及格相互之间没有影响.

   (Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;

   (Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)

解:设三门考试课程考试通过的事件分别为A,B,C,相应的概率为a,b,c

(1)考试三门课程,至少有两门及格的事件可表示为AB+AC+BC+ABC,设其概率为P1,则P1=ab(1-c)+a(1-b)c+(1-a)bc+abc=ab+ac+bc-2abc

设在三门课程中,随机选取两门,这两门都及格的概率为P2,则P2ab+ac+bc

(2)P1-P2=(ab+ac+bc-2abc)-(ab+ac+bc)=ab+ac+bc-2abc

(ab+ac+bc-3abc)=(ab(1-c)+ac(1-b)+bc(1-a))>0

\P1>P2即用方案一的概率大于用方案二的概率.

试题详情

22.(安徽卷)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。

(Ⅰ)求所选用的两种不同的添加剂的芳香度之和等于4的概率;

(Ⅱ)求所选用的两种不同的添加剂的芳香度之和不小于3的概率;

解:设“所选用的两种不同的添加剂的芳香度之和等于4”的事件为A,“所选用的两种不同的添加剂的芳香度之和不小于3”的事件为B

(Ⅰ)芳香度之和等于4的取法有2种:,故

(Ⅱ)芳香度之和等于1的取法有1种:;芳香度之和等于2的取法有1种:,故

试题详情

21.(安徽卷)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。用表示所选用的两种不同的添加剂的芳香度之和。

(Ⅰ)写出的分布列;(以列表的形式给出结论,不必写计算过程)

(Ⅱ)求的数学期望。(要求写出计算过程或说明道理)

解:(Ⅰ)


1
2
3
4
5
6
7
8
9
P









(Ⅱ)

试题详情

20.(上海春)同学们都知道,在一次考试后,如果按顺序去掉一些高分,那么班级的平均分将降低;反之,如果按顺序去掉一些低分,那么班级的平均分将提高. 这两个事实可以用数学语言描述为:若有限数列 满足,则         

                             (结论用数学式子表示).

解:如果在有限数列 中,按顺序去掉一些高分 ,那么有不等关系 ; 如果在有限数列 中,按顺序去掉一些低分 ,那么有不等关系 .从而应填 ,与 . 三、解答题(共27题)

试题详情

19.(四川卷)设离散型随机变量可能取的值为1,2,3,4。(1,2,3,4)。又的数学期望,则     ;

解:设离散性随机变量可能取的值为,所以

,即,又的数学期望,则,即,∴ .

试题详情

18.(上海卷)在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是______(结果用分数表示)。

解:在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是.

试题详情

17.(上海卷)两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是        (结果用分数表示).

解:分为二步完成: 1) 两套中任取一套,再作全排列,有种方法;2) 剩下的一套全排列,有种方法;所以,所求概率为:

试题详情

16.(山东卷)某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是   .

解:抽取教师为160-150=10人,所以学校教师人数为2400×=150 人。

试题详情


同步练习册答案