题目列表(包括答案和解析)
6. M(为圆内异于圆心的一点,则直线与该圆的位置关系为 ( )
A.相切 B.相交 C.相离 D.相切或相交
5. 已知ab,且asin+acos-=0 ,bsin+bcos-=0,则连接(a,a),
(b,b)两点的直线与单位圆的位置关系是 ( )
A.相交 B.相切 C.相离 D.不能确定
4. 定义在R上的函数y=f(x),在(-∞,)上是增函数,且函数 y=f(x+)是偶函数,当x1<,x2>且时,有 ( )
A.f(2-x1)> f(2-x2) B.f(2-x1)= f(2-x2)
C.f(2-x1)< f(2-x2) D.-f(2-x1)< f(x2-2)
3. 对“a、b、c是不全相等的正数”,给出下列判断:
①(a-b)2+(b-c)2+(c-a)2≠0; ②a>b与a<b及a≠c中至少有一个成立;
③a≠c,b≠c,a≠b不能同时成立.
其中判断正确的个数为 ( )
A.0个 B.1个 C.2个 D.3个
2. 设实数x, y满足x + y=4, 则的最小值为 ( )
A. B.4 C.2 D.8
1. 已知实数a、b、c满足b+c=6-4a+3,c-b=4-4a+,则a、b、c的大小关系是 ( )
A.c≥b>a B.a>c≥b C.c>b>a D.a>c>b
22. (文)如图甲、乙连接的6个元件,它们断电的概率第一个为P1=0.6,第二个为P2=0.2,其余四个都为P=0.3.分别求甲断电、乙通电的概率.
(理)已知a>1,数列的通项公式是,前n项和记作(n=1,2,…),规定.函数在处和每个区间(,)(i=0,1,2,…)上有定义,且,(i=1,2,…).当(,)时,f(x)的图像完全落在连结点(,)与点(,)的线段上.
(Ⅰ)求f(x)的定义域;
(Ⅱ)设f(x)的图像与坐标轴及直线l:(n=1,2,…)围成的图形面积为,
求及;
(Ⅲ)若存在正整数n,使得,求a的取值范围.
21. 平面上两个质点A、B 分别位于(0,0),(2,2),在某一时刻同时开始,每隔1秒钟向上下左右任一方向移动1个单位,已知质点A向左右移动的概率都是向上下移动的概率分别是和质点B向各个方向移动的概率是
求:(1)4秒钟后A到达C(1,1)的概率;
(2)三秒钟后,A,B同时到达D(1,2)的概率
20. 已知10件产品中有3件是次品.
(1)任意取出3件产品作检验,求其中至少有1件是次品的概率;
(2)为了保证使3件次品全部检验出的概率超过0.6,最少应抽取几件产品作检验?
19. 已知的展开式中含xn项的
系数相等,求实数m的取值范围
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com