题目列表(包括答案和解析)

 0  44971  44979  44985  44989  44995  44997  45001  45007  45009  45015  45021  45025  45027  45031  45037  45039  45045  45049  45051  45055  45057  45061  45063  45065  45066  45067  45069  45070  45071  45073  45075  45079  45081  45085  45087  45091  45097  45099  45105  45109  45111  45115  45121  45127  45129  45135  45139  45141  45147  45151  45157  45165  447348 

3、将一张矩形白纸对折,再沿着与折痕方向平行的方向反复对折,问经过n(1≤n≤7)次后,将纸展开共可得到的折痕条数为(  )

  A、2 n -1 B.2 n  C、 2 n-1  D.2 n

试题详情

2.小亮同学想在房子附近开辟一块绿化场地,现共有。米长的篱笆材料,他设计了两种方案,一种是围成正方形的场地,另一种是围成圆形的场地,那么选用哪一种方案围成场地的面积较大(  )

  A、围成正方形    B.围成圆形   C、两者一样大    D.不能确定

试题详情

1.某研究结果显示,由父母的身高预测子女身高的公式为:若父亲的身高为a米,母亲的身高为b米,则儿子成年后的身高约为×1.08米,女儿成年后身高约为米,初一女学生赵楠的父亲身高为1.75米,母亲身高为1.62米,请同学们根据公式预测一下赵楠成年后的身高约为(  )

   A.1.65米      B.1.62米   C.1.7 5米      D.l.6 0米

试题详情

3.(10分)如图2-7-4所示,甲、乙两辆大型货车于下午2:00同时从A地出发驶往P市,甲车沿一条公路向北偏东60o方向行驶,直达P市,其速度为30千米/时;乙车先沿一条公路向正东方向行驶半小时后到达B地,卸下部分货物,再沿一条通向东北方向的公路驶往P市,其速度始终为40千米/时.

⑴ 设出发后经过t小时,甲车与P市的距离为s千米,求s与t之间的函数表达式,并写出自变量t的取值范围.

⑵ 已知在P市新建的移动通讯接收发射塔,其信号覆盖面积只可达P市周围方圆30千米的区域(包括边缘地带人除此之外,该地区无其他发射塔.故甲、乙两车司机只能靠P市发射塔进行手机通话联系,问甲、乙两车司机从什么时刻开始可取得联系(精确到分钟)

试题详情

2.(10分)如图2-7-3所示,这些等腰三角形与正三角形的形状有差异,我们把它与正三角形的接近程度称为“正度”,在研究“正度”时,应保证相似三角形的“正度”相等.设等腰三角形的底和腰分别为儿为,底角和顶角分别为以尽要求“正度”的值是非负数.同学甲认为:可用式子来表示“正度”,的值越小,表示等腰三角形越接近正三角形;同学乙认为:可用式子来表示“正度”,的值越小,表示等腰三角形越接近正三角形.

  探究:

⑴ 他们的方案哪个较为合理,为什么?

⑵ 对你认为不够合理的方案,请加以改进(给出式子即可)

⑶ 请再给出一种衡量“正度”的表达式.

试题详情

5、(2005年泰州)图1是边长分别为4和3的两个等边三角形纸片ABCCDE叠放在一起(C与C重合).

(1)操作:固定△ABC,将△CDE绕点C顺时针旋转30°得到△CDE,连结ADBECE的延长线交ABF(图2);

探究:在图2中,线段BEAD之间有怎样的大小关系?试证明你的结论.(4分)

(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);

探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求yx之间的函数解析式,并写出函数自变量x的取值范围.

(3)操作:图1中△CDE固定,将△ABC移动,使顶点C落在CE的中点,边BCDE于点M,边ACDC于点N,设∠AC C=α(30°<α<90°=(图4);

探究:在图4中,线段CN·EM的值是否随α的变化而变化?如果没有变化,请你求出CN·EM的值,如果有变化,请你说明理由.

试题详情

4、(2005年枣庄)如图甲,四边形ABCD是等腰梯形,AB∥DC.由4个这样的等腰梯形可以拼出图乙所示的平行四边形.

(1)求四边形ABCD四个内角的度数;

(2)试探究四边形ABCD四条边之间存在的等量关系,并说明理由;

  (3)现有图甲中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请你画出大致的示意图.

试题详情


同步练习册答案