题目列表(包括答案和解析)

 0  45100  45108  45114  45118  45124  45126  45130  45136  45138  45144  45150  45154  45156  45160  45166  45168  45174  45178  45180  45184  45186  45190  45192  45194  45195  45196  45198  45199  45200  45202  45204  45208  45210  45214  45216  45220  45226  45228  45234  45238  45240  45244  45250  45256  45258  45264  45268  45270  45276  45280  45286  45294  447348 

12.如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C。

(1)求抛物线的解析式及点A、B、C的坐标;

(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;

(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切,若存在,请求出点P的坐标;若不存在,请说明理由。

试题详情

11.如图,在Rt△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分

别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点P沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s)。

⑴ 求x为何值时,PQ⊥AC;

⑵ 设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;

⑶ 当0<x<2时,求证:AD平分△PQD的面积;

⑷ 探索以PQ为直径的圆与AC的位置关系。请写出相应位置关系的x的取值范围(不要求写出过程)

试题详情

10.为了参加市科技节展览,同学们制造了一个截面为抛物线形的隧道模型,用了三种正方形的钢筋支架.在画设计图时,如果在直角坐标系中,抛物线的函数解析式为,正方形ABCD的边长和正方形EFGH的边长之比为5∶1,求:

(1)抛物线解析式中常数的值;

(2)正方形MNPQ的边长.

试题详情

9.已知二次函数的图象过点M(0,-3),并与x轴交于点A(x1,0)、B(x2,0)两点,且x12+x22=10。试求这个二次函数的解析式。

试题详情

8.教师提出:如图A(1,0),AB=OA,过点A、B作x轴的垂线交二次函数的图象于C、D两点,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为,点H的纵坐标为

同学讨论发现:①2 :3  ②

⑴ 请你验证①②结论成立;

⑵ 请你研究:如将上述条件“A(1,0)”改为“A”,其他条件不娈,结论①是否仍成立?

⑶ 进一步研究:在⑵的条件下,又将条件“”改为“,其他条件不娈,那么有怎样的数值关系?(写出结果并说明理由)

 

试题详情

7.]已知:如图,抛物线关于轴对称;抛物线关于y轴对称。抛物线与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线的顶点。HN垂直于x轴,垂足为N,且

(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形       ;等腰梯形      ;平行四边形      ;梯形       ;(每种特殊四边形只能写一个,写错、多写记0分)

(2)证明其中任意一个特殊四边形;

(3)写出你证明的特殊四边形的性质。

试题详情

6.农民张大伯为了致富奔小康,大力发展家庭养殖业。他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈。

(1)请你求出张大伯矩形羊圈的面积;

(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由。

试题详情

5.如图,用长为18 m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.

(1)设矩形的一边为(m),面积为(m2),求

的函数关系式,并写出自变量的取值范围;

(2)当为何值时,所围苗圃的面积最大,最大面积是多少?

试题详情

4.[05丽水]某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图所示,其拱形图形为抛物线的一部分,栅栏的跨径AB间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米.

(1) 以O为原点,OC所在的直线为y轴

建立平面直角坐标系,请根据以上的数据,求出抛物线y=ax2的解析式;

(2)计算一段栅栏所需立柱的总长度.(精确到0.1米)

试题详情

3.[05嘉兴]在坐标平面内,半径为R的⊙O与x轴交于点D(1,0)、E(5,0),与

y轴的正半轴相切于点B。点A、B关于x轴对称,点P(a,0)在x的正半轴上运动,作直线AP,作EH⊥AP于H。

(1)    求圆心C的坐标及半径R的值;

(2)    △POA和△PHE随点P的运动而变化,若它们全等,求a的值;

(3)    若给定a=6,试判定直线AP与⊙C的位置关系(要求说明理由)。

试题详情


同步练习册答案