题目列表(包括答案和解析)
12.如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C。
(1)求抛物线的解析式及点A、B、C的坐标;
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切,若存在,请求出点P的坐标;若不存在,请说明理由。
11.如图,在Rt△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分
别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点P沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s)。
⑴ 求x为何值时,PQ⊥AC;
⑵ 设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;
⑶ 当0<x<2时,求证:AD平分△PQD的面积;
⑷ 探索以PQ为直径的圆与AC的位置关系。请写出相应位置关系的x的取值范围(不要求写出过程)
10.为了参加市科技节展览,同学们制造了一个截面为抛物线形的隧道模型,用了三种正方形的钢筋支架.在画设计图时,如果在直角坐标系中,抛物线的函数解析式为,正方形ABCD的边长和正方形EFGH的边长之比为5∶1,求:
(1)抛物线解析式中常数的值;
(2)正方形MNPQ的边长.
9.已知二次函数的图象过点M(0,-3),并与x轴交于点A(x1,0)、B(x2,0)两点,且x12+x22=10。试求这个二次函数的解析式。
8.教师提出:如图A(1,0),AB=OA,过点A、B作x轴的垂线交二次函数的图象于C、D两点,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为,点H的纵坐标为。
同学讨论发现:①2 :3 ②
⑴ 请你验证①②结论成立;
⑵ 请你研究:如将上述条件“A(1,0)”改为“A”,其他条件不娈,结论①是否仍成立?
⑶ 进一步研究:在⑵的条件下,又将条件“”改为“,其他条件不娈,那么和有怎样的数值关系?(写出结果并说明理由)
7.]已知:如图,抛物线关于轴对称;抛物线关于y轴对称。抛物线与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线的顶点。HN垂直于x轴,垂足为N,且
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形 ;等腰梯形 ;平行四边形 ;梯形 ;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质。
6.农民张大伯为了致富奔小康,大力发展家庭养殖业。他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈。
(1)请你求出张大伯矩形羊圈的面积;
(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由。
5.如图,用长为18 m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.
(1)设矩形的一边为(m),面积为(m2),求关
于的函数关系式,并写出自变量的取值范围;
(2)当为何值时,所围苗圃的面积最大,最大面积是多少?
4.[05丽水]某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图所示,其拱形图形为抛物线的一部分,栅栏的跨径AB间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米.
(1) 以O为原点,OC所在的直线为y轴
建立平面直角坐标系,请根据以上的数据,求出抛物线y=ax2的解析式;
(2)计算一段栅栏所需立柱的总长度.(精确到0.1米)
3.[05嘉兴]在坐标平面内,半径为R的⊙O与x轴交于点D(1,0)、E(5,0),与
y轴的正半轴相切于点B。点A、B关于x轴对称,点P(a,0)在x的正半轴上运动,作直线AP,作EH⊥AP于H。
(1) 求圆心C的坐标及半径R的值;
(2) △POA和△PHE随点P的运动而变化,若它们全等,求a的值;
(3) 若给定a=6,试判定直线AP与⊙C的位置关系(要求说明理由)。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com