题目列表(包括答案和解析)

 0  46484  46492  46498  46502  46508  46510  46514  46520  46522  46528  46534  46538  46540  46544  46550  46552  46558  46562  46564  46568  46570  46574  46576  46578  46579  46580  46582  46583  46584  46586  46588  46592  46594  46598  46600  46604  46610  46612  46618  46622  46624  46628  46634  46640  46642  46648  46652  46654  46660  46664  46670  46678  447348 

13.(2008山东威海)如图,在梯形ABCD中,ABCDAB=7,CD=1,ADBC=5.点MN分别在边ADBC上运动,并保持MNABMEABNFAB,垂足分别为EF

(1)求梯形ABCD的面积; 

(2)求四边形MEFN面积的最大值.

(3)试判断四边形MEFN能否为正方形,若能,

求出正方形MEFN的面积;若不能,请说明理由. 

试题详情

12.(2008淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸….已知标准纸的短边长为

(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:

第一步  将矩形的短边与长边对齐折叠,点落在上的点处,铺平后得折痕

第二步   将长边与折痕对齐折叠,点正好与点重合,铺平后得折痕

的值是     的长分别是        

(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.

(3)如图3,由8个大小相等的小正方形构成“”型图案,它的四个顶点分别在“16开”纸的边上,求的长.

(4)已知梯形中,,且四个顶点都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.

试题详情

11.2008淅江宁波)2008年5月1日,目前世界上最长的跨海大桥--杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.

(1)求A地经杭州湾跨海大桥到宁波港的路程.

(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?

(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?

试题详情

10.(2008山东烟台)如图,抛物线轴于A、B两点,交轴于M点.抛物线向右平移2个单位后得到抛物线轴于C、D两点.

(1)求抛物线对应的函数表达式;

(2)抛物线轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;

(3)若点P是抛物线上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线上,请说明理由.

试题详情

9.(2008山东烟台)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.

(1)求证:△BDE≌△BCF;

(2)判断△BEF的形状,并说明理由;

(3)设△BEF的面积为S,求S的取值范围.

试题详情

8. (2008浙江义乌)如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线.将直线平移,平移后的直线轴交于点D轴交于点E

(1)将直线向右平移,设平移距离CD(t0),直角梯形OABC被直线扫过的面积(图中阴影部份)为关于的函数图象如图2所示, OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.

①求梯形上底AB的长及直角梯形OABC的面积;

②当时,求S关于的函数解析式;

(2)在第(1)题的条件下,当直线向左或向右平移时(包括与直线BC重合),在直线AB上是否存在点P,使为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

试题详情

7.(2008浙江义乌)如图1,四边形ABCD是正方形,GCD边上的一个动点(点GC、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:

(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;

②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.

(2)将原题中正方形改为矩形(如图4-6),且AB=a,BC=b,CE=ka, CG=kb (ab,k0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.

(3)在第(2)题图5中,连结,且a=3,b=2,k=,求的值.

试题详情

6. (2008浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

试题详情

5、(2007浙江金华)如图1,已知双曲线y=(k>0)与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2).则点B的坐标为    ;若点A的横坐标为m,则点B的坐标可表示为   

(2)如图2,过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限.①说明四边形APBQ一定是平行四边形;②设点A.P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出mn应满足的条件;若不可能,请说明理由.

试题详情

4.(08山东省日照市)在△ABC中,∠A=90°,AB=4,AC=3,MAB上的动点(不与AB重合),过M点作MNBCAC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AMx. 

(1)用含x的代数式表示△MNP的面积S;   

(2)当x为何值时,⊙O与直线BC相切?     

(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

试题详情


同步练习册答案