题目列表(包括答案和解析)

 0  47794  47802  47808  47812  47818  47820  47824  47830  47832  47838  47844  47848  47850  47854  47860  47862  47868  47872  47874  47878  47880  47884  47886  47888  47889  47890  47892  47893  47894  47896  47898  47902  47904  47908  47910  47914  47920  47922  47928  47932  47934  47938  47944  47950  47952  47958  47962  47964  47970  47974  47980  47988  447348 

2.[答案]解:设康乃馨每支元,水仙花每支

由题意得:   解得: 

第三束花的价格为 

答:第三束花的价格是17元. 

试题详情

1.[解析]由天平的平衡得到巧克力和果冻重量之间的数量关系设每块巧克力的重量为x克,每块果冻的重量为y克,由题意列方程组得:,解方程组即可。

[答案]20

试题详情

10.( •河南))某校八年级举行英语演讲比赛,拍了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本.

   (1) 如果他们计划用300元购买奖品,那么能卖这两种笔记本各多少本?

(2) 两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B

种笔记本数量的,但又不少于B种笔记本数量的,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.

① 请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;

② 请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?

第1课时  方程(组)与不等式(组)问题

试题详情

9.(•湖北省黄石市)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:

 
A型利润
B型利润
甲店
200
170
乙店
160
150

(1)设分配给甲店A型产品件,这家公司卖出这100件产品的总利润为W(元),求W关于的函数关系式,并求出的取值范围;

(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;

(3)为了促销,公司决定仅对甲店型产品让利销售,每件让利元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?

试题详情

8.(•达州市)“5·12”汶川大地震震惊全世界,面对人类特大灾害,在党中央国务院的领导下,全国人民万众一心,众志成城,抗震救灾.现在两市各有赈灾物资500吨和300吨,急需运往汶川400吨,运往北川400吨,从两市运往汶川、北川的耗油量如下表:

 
汶川(升/吨)
北川(升/吨)
A市
0.5
0.8
B市
1.0
0.4

(1)若从A市运往汶川的赈灾物资为吨,求完成以上运输所需总耗油量y(升)与x(吨)的函数关系式.

(2)请你设计一种最佳运输方案,使总耗油量最少,并求出完成以上方案至少需要多少升油?

试题详情

7.(•宁波市)5月1日,目前世界上最长的跨海大桥--杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.

(1)求A地经杭州湾跨海大桥到宁波港的路程.

(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?

(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?

类型之三  借助方程、不等式或函数求极值问题

 “在生活中学数学,到生活中用数学”,是新课标所倡导的一个主旨之一,我们可以利用数学知识求解生活中的实际问题,有些问题可以借助于方程、不等式和函数知识来求一些问题的极值问题,这就要求我们建立恰当的数学模式来解决.

试题详情

6.(•重庆市)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县。根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。

(1)求这批赈灾物资运往D、E两县的数量各是多少?

(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨。则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;

(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:

 
A地
B地
C地
运往D县的费用(元/吨)
220
200
200
运往E县的费用(元/吨)
250
220
210

为即使将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?

试题详情

5.(·宜宾市)暑假期间,小明到父亲经营的小超市参加社会实践活动.一天小明随父亲从银行换回来58张,共计200元的零钞用于顾客付款时找零.细心的小时清理了一下,发现其中面值为1元的有20张,面值为10元的有7张,剩下的均为2元和5元的钞票.你能否用所学的数学方法算出2元和5元的钞票的各有多少张吗?请写出演算过程.

试题详情

4.(·济南市)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.

(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;

(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.

试题详情

3.(•济南市)某厂工人小王某月工作的部分信息如下:

信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25元;

信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.

生产产品件数与所用时间之间的关系见下表:

生产甲产品件数(件)
生产乙产品件数(件)
所用总时间(分)
10
10
350
30
20
850

信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.

根据以上信息,回答下列问题:

(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?

(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?

类型之二  借助方程组合或不等式(组)解决方案问题

借助二元一次方程组和一元一次不等式(组)求解方案问题是中考一种新题型,考察了同学们综合运用方程组和不等式深入的分析、比较、归纳和说理的能力.

试题详情


同步练习册答案