题目列表(包括答案和解析)

 0  47917  47925  47931  47935  47941  47943  47947  47953  47955  47961  47967  47971  47973  47977  47983  47985  47991  47995  47997  48001  48003  48007  48009  48011  48012  48013  48015  48016  48017  48019  48021  48025  48027  48031  48033  48037  48043  48045  48051  48055  48057  48061  48067  48073  48075  48081  48085  48087  48093  48097  48103  48111  447348 

25.(08江西南昌)24.如图,抛物线相交于两点.

(1)求值;

(2)设轴分别交于两点(点在点的左边),轴分别交于两点(点在点的左边),观察四点的坐标,写出一条正确的结论,并通过计算说明;

(3)设两点的横坐标分别记为,若在轴上有一动点,且,过作一条垂直于轴的直线,与两条抛物线分别交于CD两点,试问当为何值时,线段CD有最大值?其最大值为多少?

(08江西南昌24题解析)24.解:(1)在抛物线上,

,··························································································· 2分

解得.··········································································································· 3分

(2)由(1)知抛物线.······· 5分

时,解得

在点的左边,.············ 6分

时,解得

在点的左边,.························································ 7分

与点对称,点与点对称.······························································· 8分

(3)

抛物线开口向下,抛物线开口向上.················ 9分

根据题意,得

.··············································· 11分

时,有最大值.··············································· 12分

说明:第(2)问中,结论写成“四点横坐标的代数和为0”或“”均得1分.

试题详情

49.(08四川宜宾)24、(本小题满分12分)

已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.

(1)    求该抛物线的解析式;

(2)    若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;

(3)    △AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.

(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)

(08四川宜宾24题解析)24.解:( 1)由已知得:解得

c=3,b=2

∴抛物线的线的解析式为

(2)由顶点坐标公式得顶点坐标为(1,4)

所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)

设对称轴与x轴的交点为F

所以四边形ABDE的面积=

=

=

=9

(3)相似

如图,BD=

BE=

DE=

所以, 即: ,所以是直角三角形

所以,且,

所以.

试题详情

48.(08四川内江)(本题答案暂缺)21.(9分)如图,一次函数的图象经过第一、二、三象限,且与反比例函数图象相交于两点,与轴交于点,与轴交于点.且点横坐标是点纵坐标的2倍.

(1)求反比例函数的解析式;

(2)设点横坐标为面积为,求的函数关系式,并求出自变量的取值范围.

试题详情

9.如图11,已知二次函数的图像经过三点A,B,C,它的顶点为M,又正比例函数的图像于二次函数相交于两点D、E,且P是线段DE的中点。

⑴求该二次函数的解析式,并求函数顶点M的坐标;

⑵已知点E,且二次函数的函数值大于正比例函数时,试根据函数图像求出符合条件的自变量的取值范围;

⑶当时,求四边形PCMB的面积的最小值。

[参考公式:已知两点,则线段DE的中点坐标为]

 

试题详情

47.(08四川泸州)(本题答案暂缺)四(本大题 10分)

试题详情

46.(08四川凉山)25.(9分)如图,在的中点,以为直径的的三边,交点分别是点.的交点为,且

(1)求证:

(2)求的直径的长.

(3)若,以为坐标原点,所在的直线分别为轴和轴,建立平面直角坐标系,求直线的函数表达式.

(08四川凉山25题解析)25.(9分)

(1)连接

是圆直径,,即

.················································································· 1分

.··························· 2分

(2)斜边的中点,

又由(1)知

相似······················································ 3分

 ············································································ 4分

······································ 5分

直径.······························································································· 6分

(3)斜边上中线

······························ 7分

设直线的函数表达式为

根据题意得

  解得

直线的函数解析式为(其他方法参照评分)································· 9分

试题详情

25.如图10,已知抛物线经过点(1,-5)和(-2,4)

(1)求这条抛物线的解析式.

(2)设此抛物线与直线相交于点AB(点B在点A的右侧),平行于轴的直线与抛物线交于点M,与直线交于点N,交轴于点P,求线段MN的长(用含的代数式表示).

(3)在条件(2)的情况下,连接OMBM,是否存在的值,使△BOM的面积S最大?若存在,请求出的值,若不存在,请说明理由.

试题详情

43.(08四川广安)(本题答案暂缺)七、解答题(本大题满分12分)

试题详情

28. 如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且=3,sin∠OAB=.

(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;

(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;

(3)若将点O、点A分别变换为点Q( -2k ,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为,△QNR的面积,求的值.

试题详情


同步练习册答案