题目列表(包括答案和解析)
9. (2011广东茂名,18,7分)画图题:
(1)如图,将△ABC绕点O顺时针旋转180°后得到△.请你画出旋转后的△ ; (3分) (2)请你画出下面“蒙古包”的左视图.(4分)
[答案]解:如图所示:(1)画对得3分;(2)画对得4分(说明:图形基本正确给满分,如果没有画出线段CD扣1分;如果把线段AB、CD画成弧线也各扣1分,考生可以不用标出字母A、B、C、D).
8. (2011湖北武汉市,21,7分)(本题满分7分)在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).
(1)试说明如何平移线段AC,使其与线段ED重合;
(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;
(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.
[答案](1)将线段AC先向右平移6个单位,
再向下平移8个单位.(其它平移方式也可)
(2)F(-1,-1)
(3)画出如图所示的正确图形
7. (2011四川凉山州,21,8分)在平面直角坐标系中,已知三个顶点的坐标分别为
⑴画出,并求出所在直线的解析式。
⑵画出绕点顺时针旋转后得到的,并求出在上述旋转过程中扫过的面积。
[答案]
⑴如图所示,即为所求
设所在直线的解析式为
∵,
∴ 解得
∴
⑵如图所示,即为所求
由图可知,
=
6. (2011山东聊城,20,8分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O.
(1)求证:△BCE≌△B′CF;
(2)当旋转角等于30°时,AB与A′B′垂直吗?请说明理由.
[答案](1)因∠B=∠B/,BC=B/C,∠BCE=∠B/CF,所以△BCE≌△B′CF;
(2)AB与A′B′垂直,理由如下:
旋转角等于30°,即∠ECF=30°,所以∠FCB/=60°,又∠B=∠B/=60°,根据四边形的内角和可知∠BOB/的度数为360°-60°-60°-150°=90°,所以AB与A′B′垂直
5. (2011山东济宁,22,8分)去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴建立直角坐标系(如图),两村的坐标分别为A(2,3),B(12,7).
(1)若从节约经费考虑,水泵站建在距离大桥O多远的地方可使所用输水管最短?
(2)水泵站建在距离大桥O多远的地方,可使它到张村、李村的距离相等?
[答案]解:(1)作点B关于x轴的对称点E,连接AE,
则点E为(12,-7),
设直线AE的函数关系式为y=kx+b,则
,解得,
所以,直线AE解析式为y=-x+5
当y=0时,x=5,所以,水泵站应建在距离大桥5千米的地方时,可使所用输水管道最短.
(2)作线段AB的垂直平分线GF,交AB 于点F,交x轴于点G,
设点G的坐标为(x,0),
在Rt△AGD中,AG2=AD2+DG2=32+(x-2)2
在Rt△BCG中,BG2=BC2+GC2=72+(12-x)2
∵AG= BG,∴32+(x-2)2=72+(12-x)2
解得x=9.
所以,水泵站建在距离大桥9千米的地方,可使它到张村、李村的距离相等.
4. (2011浙江绍兴,18,8分)分别按下列要求解答:
(1)在图1中,作出关于直线成轴对称的图形;(2)在图2中,作出关于点成中心对称的图形.
|
|
[答案](1)如图1;
(2)如图2
|
|
3. (2011浙江杭州,21, 8)在平面上,七个边长均为1的等边三角形,分别用①至⑦表示(如图).从④⑤⑥⑦组成的图形中,取出一个三角形,使剩下的图形经过一次平移,与①②③组成的图形拼成一个正六边形.
(1)你取出的是哪个三角形?写出平移的方向和平移的距离;
(2)将取出的三角形任意放置在拼成的正六边形所在平面上,问:正六边形没有被三角形盖住的面积能否等于?请说明理由.
[答案](1)当取出的是⑦时,将剩下的图形向上平移1(如图1);当取出的是⑤时,将⑥⑦向上平移2(如图2)
(2)能.每个小等边三角形的面积为,五个小等边三角形的面积和为,正六边形的面积为,而,所以正六边形没有被三角形盖住的面积能等于.
2. (2011安徽,22,12分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A′B′C.
(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.
证明:△A′CD是等边三角形;
(2)如图(2),连接A′A、B′B,设△ACA′ 和△BCB′ 的面积分别为S△ACA′ 和S△BCB′.
求证:S△ACA′ :S△BCB′ =1:3;
(3)如图(3),设AC中点为E,A′B′中点为P,AC=,连接EP,当= °时,EP长度最大,最大值为 .
[答案](1)∵AB∥CB′,∴∠B=∠BC B′=30°,∴∠A′CD=60°,
又∵∠A′=60°,∴∠A′CD=∠A′=∠A′DC=60°,∴△A′CD是等边三角形;
(2)∵∠ACA′=∠BCB′,AC=A′C,BC=B′C,∴△ACA′∽△BCB′,相似比为,
∴S△ACA′ :S△BCB′ =1:3;
(3)120°,.
当E、C、P三点不共线时,EC+CP>EP;
当E、C、P三点共线时,EC+CP=EP;
综上所述,EP≤EC+CP;
则当旋转120°时,E、C、P三点共线,EP长度最大,此时EP=EC+CP=.
1. (2011安徽,17,8分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;
(1)将△ABC向右平移4个单位,再向上平移1个单位,得到△A1B1C1;
(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.
[答案]如图:
20.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com