题目列表(包括答案和解析)
14. (20011江苏镇江,22,5分)已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,ED=DC.
求证:AB=AC
[答案]证明∵AD平分∠EDC,∴∠ADE=∠ADC,又DE=DC,AD=AD,
∴△ADE≌△ADC, ∴∠E=∠C,
又∠E=∠B, ∴∠B =∠C, ∴AB=AC.
13. (2011湖南衡阳,21,6分)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.
[证明]∵在△ABC中,AD是中线,
∴BD=CD,∵CF⊥AD,BE⊥AD,∴∠CFD=∠BED=90° ,在△BED与△CFD中,∵∠BED=∠CFD,∠BDE=∠CDF,BD=CD,∴△BED≌△CFD,∴BE=CF.
12. (2011湖北武汉市,19,6分)(本题满分6分)如图,D,E,分 别 是 AB,AC 上 的 点 ,且AB=AC,AD=AE.求证∠B=∠C.
[答案]证明:在△ABE和△ACD中,
AB=AC ∠A=∠A AE=AD
∴△ABE≌△ACD
∴∠B=∠C
11. (2011广东省,13,6分)已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.
求证:AE=CF.
[答案]∵AD∥CB
∴∠A=∠C
又∵AD=CB,∠D=∠B
∴△ADF≌△CBE
∴AF=CE
∴AF+EF=CE+EF
即AE=CF
10.(2011四川内江,18,9分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.
试猜想线段BE和EC的数量及位置关系,并证明你的猜想.
[答案]BE=EC,BE⊥EC
∵AC=2AB,点D是AC的中点
∴AB=AD=CD
∵∠EAD=∠EDA=45°
∴∠EAB=∠EDC=135°
∵EA=ED
∴△EAB≌△EDC
∴∠AEB=∠DEC,EB=EC
∴∠BEC=∠AED=90°
∴BE=EC,BE⊥EC
9. (2011福建福州,17(1),8分)如图6,于点,于点,交于点,且.
求证.
[答案](1)证明:∵,
∴
在和中
∴≌
∴
8. ( 2011重庆江津, 22,10分)在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF;
(2)若∠CAE=30º,求∠ACF度数.
[答案](1)∵∠ABC=90°,∴∠CBF=∠ABE=90°.
在Rt△ABE和Rt△CBF中,
∵AE=CF, AB=BC, ∴Rt△ABE≌Rt△CBF(HL)
(2)∵AB=BC, ∠ABC=90°, ∴ ∠CAB=∠ACB=45°.
∵∠BAE=∠CAB-∠CAE=45°-30°=15°.
由(1)知 Rt△ABE≌Rt△CBF, ∴∠BCF=∠BAE=15°,
∴∠ACF=∠BCF+∠ACB=45°+15°=60°.
7. (2011广东汕头,13,6分)已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.
求证:AE=CF.
[答案]∵AD∥CB
∴∠A=∠C
又∵AD=CB,∠D=∠B
∴△ADF≌△CBE
∴AF=CE
∴AF+EF=CE+EF
即AE=CF
6. (2011江苏连云港,20,6分)两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点.不重叠的两部分△AOF与△DOC是否全等?为什么?
[答案]解:全等 .理由如下:∵两三角形纸板完全相同,∴BC=BF,AB=BD,∠A=∠D,∴AB-BF=BD-BC,即AF=DC.在△AOF和△DOC中,∵AF=DC,∠A=∠D,∠AOF=∠DOC,∴△AOF≌△DOC(AAS).
5. (2011四川重庆,19,6分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
[证明]∵AF=DC,∴AC=DF,又∠A=∠D ,
AB=DE,∴△ABC≌△DEF,
∴∠ACB=∠DFE,∴BC∥EF.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com