题目列表(包括答案和解析)
7.某企业三月中旬生产A、B、C三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:
产品类别 |
A |
B |
C |
产品数量(件) |
|
1300 |
|
样本容量 |
|
130 |
|
由于不小心,表格中A、C产品的有关数据已被污染得看不清楚,统计员只记得A产品的样本容量比C产品的样本容量多10.根据以上信息,可得C产品的数量是________件.
解析:设样品的容量为x,则×1300=130,所以x=300.所以A产品和C产品在样本中共有300-130=170(件).
设C产品的样本容量为y,则y+(y+10)=170,所以y=80.所以C产品的数量为×80=800(件).
答案:800
6.下面是一个2×2列联表
|
y1 |
y2 |
总计 |
x1 |
a |
21 |
73 |
x2 |
2 |
25 |
27 |
总计 |
b |
46 |
|
则表中a,b处的值分别为( )
A.94,96 B.52,50
C.52,54 D.54,52
解析:∵a+21=73,∴a=52.
又∵a+2=b知b=54,故选C.
答案:C
5.利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断信“X和Y有关系”的可信度.如果k>5.024,那么就有把握认为“X和Y有关系”的百分比为( )
P(K2>k) |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.84 |
5.024 |
6.635 |
7.879 |
10.83 |
A.25% B.75%
C.2.5% D.97.5%
解析:∵k>5.024时,“X和Y无关系”的可信度0.025,所以“X和Y有关系”百分比97.5%.
答案:D
4.下列有关线性回归的说法,不正确的是( )
A.相关关系的两个变量不是因果关系
B.散点图能直观地反映数据的相关程度
C.回归直线最能代表线性相关的两个变量之间的关系
D.任一组数据都有回归方程
解析:根据两个变量属相关关系的概念,可知A正确;散点图能直观地描述呈相关关系的两个变量的离散程度,且回归直线最能代表它们之间的相关关系,所以B、C正确;只有线性相关的数据才有回归直线,所以D不正确.
答案:D
3.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力从4.6到5.0之间的学生数为b,则a,b的值分别为( )
A.0.27,78 B.0.27,83
C.2.7,78 D.2.7,83
解析:由图知共有9组,故后6组的频率是以2.7×0.1=0.27为首项,d为公差的等差数列,又各组频率之和为0.01+0.03+0.09+0.27×6+15d=1,故d=-0.05.所以各组的频率依次为0.01,0.03,0.09,0.27,0.22,0.17,0.12,0.07,0.02,故a=0.27,b=(0.27+0.22+0.17+0.12)×100=78,故选A.
答案:A
2.一个样本a,3,5,7的平均数是b,且a、b是方程x2-5x+4=0的两根,则这个样本的方差是( )
A.3 B.4
C.5 D.6
解析:x2-5x+4=0的两根是1,4.
当a=1时,a,3,5,7的平均数是4,当a=4时,a,3,5,7的平均数不是1.
∴a=1,b=4.则方差s2=×[(1-4)2+(3-4)2+(5-4)2+(7-4)2]=5,故选C.
答案:C
1.一个单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人,为了了解职工的收入情况,要从中抽取一个容量为20的样本,如何去抽取?
解法一:将160人从1至160编号,然后将用白纸做成有1-160号的160个号签放入箱内搅匀,最后从中取20个签,与签号相同的20个人被选出.
解法二:将160人从1至160编号,按编号顺序分成20组,每组8人,令1-8号为第一组,9-16号为第二组,…,153-160号为第20组.从第一组中用抽签方式抽到一个为k号(1≤k≤8),其余组是(k+8n)号(n=1,2,3,…,19),如此抽到20人.
解法三:按20?160=1?8的比例,从业务员中抽取12人,从管理人员中抽取5人,从后勤人员中抽取3人,都用简单随机抽样法从各类人员中抽取所需人数,他们合在一起恰好抽到20人.
以上的抽样方法,依次是简单随机抽样、分层抽样、系统抽样的顺序是( )
A.解法一、解法二、解法三
B.解法二、解法一、解法三
C.解法一、解法三、解法二
D.解法三、解法一、解法二
解析:解法二为简单随机抽样,解法二为系统抽样,解法三为分层抽样,故选C.
答案:C
13.(2010·临沂模拟)将甲、乙两颗骰子先后各抛一次,a、b分别表示抛掷甲、乙两颗骰子所出现的点数.
(1)若点P(a,b)落在不等式组?x>0,y>0,x+y≤4表示的平面区域内的事件记为A,求事件A的概率;
(2)若点P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.
解:(1)基本事件总数为6×6=36.
当a=1时,b=1,2,3;
当a=2时,b=1,2;
当a=3时,b=1.
共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个点落在条件区域内,∴P(A)==.
(2)当m=7时,共有(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)6个点满足条件,此时P==最大.
12.某省是高中新课程改革实验省份之一,按照规定每个学生都要参加学业水平考试,全部及格才能毕业,不及格的可进行补考.某校有50名同学参加物理、化学、生物水平测试补考,已知只补考物理的概率为,只补考化学的概率为,只补考生物的概率为.随机选出一名同学,求他不止补考一门的概率.
解:设“不止补考一门”为事件E,“只补考一门”为事件F,“只补考物理”为事件A,则P(A)=,“只补考化学”为事件B,则P(B)=,“只补考生物”为事件C,则P(C)=.这三个事件为互斥事件,所以P(F)=P(A∪B∪C)=P(A)+P(B)+P(C)==0.6.
又因为事件E和事件F互为对立事件.
所以P(E)=1-P(F)=1-0.6=0.4.
即随机选出一名同学,他不止补考一门的概率为0.4.
11.国家射击队的队员为在2010年亚运会上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次,命中7-10环的概率如下表所示:
命中环数 |
10环 |
9环 |
8环 |
7环 |
概率 |
0.32 |
0.28 |
0.18 |
0.12 |
求该射击队员射击一次
(1)射中9环或10环的概率;
(2)至少命中8环的概率;
(3)命中不足8环的概率.
解:记事件“射击一次,命中k环”为Ak(k∈N,k≤10),则事件Ak彼此互斥.
(1)记“射击一次,射中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件的概率加法公式得
P(A)=P(A9)+P(A10)=0.32+0.28=0.60.
(2)设“射击一次,至少命中8环”的事件为B,那么当A8,A9,A10之一发生时,事件B发生.
由互斥事件的概率加法公式得
P(B)=P(A8)+P(A9)+P(A10)
=0.18+0.28+0.32=0.78.
(3)由于事件“射击一次,命中不足8环”是事件B:“射击一次,至少命中8环”的对立事件,即表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得
P()=1-P(B)=1-0.78=0.22.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com