题目列表(包括答案和解析)
4.不等式的解集是 ( )
A. B.
C. D.
3.圆的圆心到直线的距离为 ( )
A.2 B. C.1 D.
2.设复数, 则 ( )
A.–3 B.3 C.-3i D.3i
1.函数的定义域是: ( )
A. B. C. D.
20.(本小题满分13分)
给定有限个正数满足条件T:每个数都不大于50且总和L=1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:
首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差与所有可能的其他选择相比是最小的,称为第一组余差;
然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为;如此继续构成第三组(余差为)、第四组(余差为)、……,直至第N组(余差为)把这些数全部分完为止.
(I)判断的大小关系,并指出除第N组外的每组至少含有几个数;
(II)当构成第n(n<N)组后,指出余下的每个数与的大小关系,并证明;
(III)对任何满足条件T的有限个正数,证明:.
2004年普通高等学校招生全国统一考试
19.(本小题满分12分)
某段城铁线路上依次有A、B、C三站,AB=5km,BC=3km,在列车运行时刻表上,规定列车8时整从A站发车,8时07分到达B站并停车1分钟,8时12分到达C站.在实际运行中,假设列车从A站正点发车,在B站停留1分钟,并在行驶时以同一速度匀速行驶,列车从A站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差.
(I)分别写出列车在B、C两站的运行误差;
(II)若要求列车在B,C两站的运行误差之和不超过2分钟,求的取值范围.
18.(本小题满分14分)
函数是定义在[0,1]上的增函数,满足且,在每个区间(1,2……)上,的图象都是斜率为同一常数k的直线的一部分。
(I)求及,的值,并归纳出的表达式;
(II)设直线,,x轴及的图象围成的矩形的面积为(1,2……),记,求的表达式,并写出其定义域和最小值
17.(本小题满分14分)
如图,过抛物线上一定点P()(),作两条直线分别交抛物线于A(),B()
(I)求该抛物线上纵坐标为的点到其焦点F的距离
(II)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数
16.(本小题满分14分)
如图,在正三棱柱中,AB=3,,M为的中点,P是BC上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:
(I)该三棱柱的侧面展开图的对角线长;
(II)PC和NC的长;
(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)
15.(本小题满分13分)
在中,,,,求的值和的面积.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com