题目列表(包括答案和解析)
43. (2005上海卷文第21题,本题共有3个小题,第1小题满分4分, 第2小题满分6分,
第3小题满分6分.)
已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.
(1)求抛物线方程;
(2)过M作MN⊥FA, 垂足为N,求点N的坐标;
(3)以M为圆心,MB为半径作圆M.当K(m,0)是x轴上一动点时,丫讨论直线AK与圆M的位置关系.
42. (2005天津卷理第21题,文第22题,满分14分)
抛物线C的方程为,过抛物线C上一点P(x0,y0)(x 0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足.
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上;
(Ⅲ)当=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.
41. (2005浙江卷理第17题)
如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l1:x=m(|m|>1),P为l1上的动点,使∠F1PF2最大的点P记为Q,求点Q的坐标(用m表示).
40. (2005浙江卷文第19题)
如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.
(Ⅰ)求椭圆的方程;
(Ⅱ)若点P为l上的动点,求∠F1PF2最大值.
39. (2005重庆卷理第21题,满分12分)
已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。
(1) 求双曲线C2的方程;
(2) 若直线l:与椭圆C1及双曲线C2恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围。
38. (2005重庆卷文第21题,满分12分)
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。
(1) 求双曲线C的方程;
(2) 若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。
37.(2005江西卷理第22题,满分14分)
如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.
(1)求△APB的重心G的轨迹方程.
(2)证明∠PFA=∠PFB.
36.(2005江西卷文第21题,满分12分)
如图,M是抛物线上y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.
(1)若M为定点,证明:直线EF的斜率为定值;
(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹
35.(2005广东卷第17题)
在平面直角坐标系xOy中,抛物线上异于坐标原点O的两不同动点A、B满足(如图4所示).
(Ⅰ)求得重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
(35题图) (36题图) (37题图)
34.(2005辽宁卷第21题,满分14分)
已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足
(Ⅰ)设为点P的横坐标,证明;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,
使△F1MF2的面积S=若存在,求∠F1MF2
的正切值;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com