题目列表(包括答案和解析)
21.(本小题满分12分)
设动点P到点A(-l,0)和B(1,0)的距离分别为d1和d2,
∠APB=2θ,且存在常数λ(0<λ<1),使得d1d2 sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)过点B作直线交双曲线C的右支于M、N两
点,试确定λ的范围,使·=0,其中点
O为坐标原点.
20.(本小题满分12分)
右图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到
的几何体,截面为ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1;
(2)求二面角B-AC-A1的大小;
(3)求此几何体的体积.
19.(本小题满分12分)
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5, 0.6, 0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.
(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.
18.(本小题满分12分)
如图,函数y=2cos(ωx+θ) (x∈R,0≤θ≤)的
图象与y轴交于点(0,),且在该点处切线的斜
率为一2.
(1)求θ和ω的值;
(2)已知点A(,0),点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当y0=,x∈[,π]时,求x0的值.
17.(本小题满分12分)
已知函数在区间(0,1)内连续,且.
(1)求实数k和c的值;
(2)解不等式
16.设有一组圆Ck:(x-k+1)2+(y-3k)2=2k4 (k∈N*).下
列四个命题:
A.存在一条定直线与所有的圆均相切
B.存在一条定直线与所有的圆均相交
C.存在一条定直线与所有的圆均不相交
D.所有的圆均不经过原点
其中真命题的代号是 .(写出所有真命题的代号)
15.如图,在△ABC中,点O是BC的中点,过点O的直
线分别交直线AB、AC于不同的两点M、N,若=
m,=n,则m+n的值为 .
14.已知数列{an}对于任意p,q ∈N*,有ap+aq=ap+q,若a1=,则a36= .
13.设函数y=4+log2(x-1)(x≥3),则其反函数的定义域为 .
12.设p:f(x)=ex+In x+2x2+mx+l在(0,+∞)内单调递增,q:m≥-5,则p是q的
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
绝密★启用前
2007年普通高等学校招生全国统一考试(江西卷)
理科数学
第Ⅱ卷
第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com