题目列表(包括答案和解析)
1.设集合则 (A∩B)等于( )
A.R B. C.{0} D.
12.(蒲中)设a、b∈R,求证:≤
证明:当|a+b|=0时,不等式已成立
当|a+b|≠0时,∵ |a+b|≤|a|+|b|
∴ =≤=
=+≤
点评:错证:∵|a+b|≤|a|+|b|
∴ ≤≤ ①
错因:①的推理无根据。
11.(城西中学)在边长为a的正三角形中,点P、Q、R分别在BC、CA、AB上,且BP+CQ+AR=a,设BP=x,CQ=y,AR=z,三角形PQR的面积为s,求s的最大值及相应的x、y、z的值。
解 设ΔBPR、ΔPCR、ΔARQ的面积为s1、、s2、s3,则
S=SΔABC-S1-S2-S3=a2-[a2-(xy+xz+yz)]=(xy+xz+yz)
由x+y+z=a,得xy+yz+zx≤,∴Smav=a2,此时,x=y=z=
错因:不知如何使用基本不等式。
10.(城西中学)设集合M=[-1,1],N=[-,],f(x)=2x2+mx-1,若x∈N,m∈M,求证|f(x)|≤
证明:|f(x)|=|2x2+mx-1|= |(2x2-1)+mx|≤|(2x2-1)|+|mx|= (2x2-1)+|mx|≤(2x 2-1)+| x|
=-2(| x|-)2+≤
错因:不知何时使用绝对值不等式。
9.(磨中)设函数f(x)=logb(b>0且b≠1),
(1)求f(x)的定义域;
(2)当b>1时,求使f(x)>0的所有x的值。
解 (1)∵x2-2x+2恒正,
∴f(x)的定义域是1+2ax>0,
即当a=0时,f(x)定义域是全体实数。
当a>0时,f(x)的定义域是(-,+∞)
当a<0时,f(x)的定义域是(-∞,-)
(2)当b>1时,在f(x)的定义域内,f(x)>0>1x2-2x+2>1+2ax
x2-2(1+a)x+1>0
其判别式Δ=4(1+a)2-4=4a(a+2)
(i)当Δ<0时,即-2<a<0时
∵x2-2(1+a)x+1>0
∴f(x)>0x<-
(ii)当Δ=0时,即a=-2或0时
若a=0,f(x)>0(x-1)2>0
x∈R且x≠1
若a=-2,f(x)>0(x+1)2>0
x<且x≠-1
(iii)当△>0时,即a>0或a<-2时
方程x2-2(1+a)x+1=0的两根为
x1=1+a-,x2=1+a+
若a>0,则x2>x1>0>-
∴或
若a<-2,则
∴f(x)>0x<1+a-或1+a+<x<-
综上所述:当-2<a<0时,x的取值集合为x|x<-
当a=0时,x∈R且x≠1,x∈R,当a=-2时:x|x<-1或-1<x<
当a>0时,x∈x|x>1+a+或-<x<1+a-
当a<-2时,x∈x|x<1+a-或1+a+<x<-
错误原因:解题时易忽视函数的定义域,不会合理分类。
8.(搬中)方程的两根都大于2,求实数的取值范围。
解:设方程的两根为,则必有
说明:此题易犯这样的错误:
且
和判别式联立即得的范围
原因是只是的充分条件
即不能保证同时成立
7.(搬中) 若且,解不等式:
解:若,两边取以为底的对数
若,同样有,
又
当时不等式的解为
当时不等式的解为
说明:此题易在时的解中出错,容易忽略这个条件。解决对数问题要注意真数大于0的条件。
7.(搬中)解不等式:。
解:当时,原不等式为
当时,原不等式为
又
原不等式的解为
说明:此题易在时处出错,忽略了的前提。这提醒我们分段求解的结果要考虑分段的前提。
6.(搬中)求函数的最大值。
解:
当且仅当
即时,
说明:此题容易这样做:
。但此时等号应满足条件,这样的是不存在的,错误的原因是没有考虑到等号成立的条件。这一点在运用重要不等式时一定要引起我们高度的重视。
5.(搬中) 求函数的极大值或极小值。
解:当时,
当且仅当
即时,
当时,
当且仅当
即时,
说明:此题容易漏掉对的讨论。不等式成立的前提是。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com