题目列表(包括答案和解析)

 0  51423  51431  51437  51441  51447  51449  51453  51459  51461  51467  51473  51477  51479  51483  51489  51491  51497  51501  51503  51507  51509  51513  51515  51517  51518  51519  51521  51522  51523  51525  51527  51531  51533  51537  51539  51543  51549  51551  51557  51561  51563  51567  51573  51579  51581  51587  51591  51593  51599  51603  51609  51617  447348 

4. 数列{a}中,已知a=1,当n≥2时a=a+2n-1,依次计算a、a、a后,猜想a的表达式是_____。

  A.  3n-2     B.  n      C.  3    D.  4n-3

试题详情

3. 某个命题与自然数n有关,若n=k  (k∈N)时该命题成立,那么可推得n=k+1时该命题也成立。现已知当n=5时该命题不成立,那么可推得______。   (94年上海高考)

  A.当n=6时该命题不成立     B.当n=6时该命题成立

  C.当n=4时该命题不成立     D.当n=4时该命题成立

试题详情

2. 用数学归纳法证明1+++…+<n  (n>1)时,由n=k (k>1)不等式成立,推证n=k+1时,左边应增加的代数式的个数是_____。

  A.  2     B.  2-1     C.  2     D.  2+1

试题详情

数学归纳法是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是递推的依据。实际上它使命题的正确性突破了有限,达到无限。证明时,关键是k+1步的推证,要有目标意识。

Ⅰ、再现性题组:

1. 用数学归纳法证明(n+1)(n+2)…(n+n)=2·1·2…(2n-1)  (n∈N),从“k到k+1”,左端需乘的代数式为_____。

  A.  2k+1    B.  2(2k+1)    C.      D. 

试题详情

10. 设s>1,t>1,m∈R,x=logt+logs,y=logt+logs+m(logt+logs),

①  将y表示为x的函数y=f(x),并求出f(x)的定义域;

②  若关于x的方程f(x)=0有且仅有一个实根,求m的取值范围。

试题详情

9. 设二次函数f(x)=Ax+Bx+C,给定m、n(m<n),且满足A[(m+n)+ mn]+2A[B(m+n)-Cmn]+B+C=0 。 

①  解不等式f(x)>0;

② 是否存在一个实数t,使当t∈(m+t,n-t)时,f(x)<0 ?若不存在,说出理由;若存在,指出t的取值范围。

试题详情

8. 已知〈β<α〈π,cos(α-β)=,sin(α+β)=-,求sin2α的值。(92年高考题)

试题详情

7. 若x>-1,则f(x)=x+2x+的最小值为___________。

试题详情

6. 设F和F为双曲线-y=1的两个焦点,点P在双曲线上且满足∠FPF=90°,则△FPF的面积是_________。

试题详情

5.    化简:2+的结果是_____。

A.  2sin4   B.  2sin4-4cos4   C.  -2sin4   D.  4cos4-2sin4

试题详情


同步练习册答案