题目列表(包括答案和解析)
3.(福建9) 某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( A )
A.14 B.24 C.28 D.48
2.(安徽12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是 ( C )
A. B. C. D.
1.(安徽7).设则中奇数的个数为( A )
A.2 B.3 C.4 D.5
18.(陕西20)(本小题满分12分)
已知数列的首项,,….
(Ⅰ)证明:数列是等比数列;
(Ⅱ)数列的前项和.
解:(Ⅰ) , ,
,又,,
数列是以为首项,为公比的等比数列.
(Ⅱ)由(Ⅰ)知,即,.
设…, ①
则…,②
由①②得
…,
.又….
数列的前项和 .
17.(湖北21).(本小题满分14分)
已知数列,其中为实数,为正整数.
(Ⅰ)证明:当
(Ⅱ)设为数列的前n项和,是否存在实数,使得对任意正整数n,都有
若存在,求的取值范围;若不存在,说明理由.
(Ⅰ)证明:假设存在一个实数l,使{an}是等比数列,则有,即
()2=2矛盾.
所以{an}不是等比数列.
(Ⅱ)证明:∵
又由上式知
故当数列{bn}是以为首项,为公比的等比数列.
(Ⅲ)当由(Ⅱ)得于是
当时,,从而上式仍成立.
要使对任意正整数n , 都有
即
令
当n为正奇数时,当n为正偶数时,
于是可得
综上所述,存在实数,使得对任意正整数,都有
的取值范围为
16.(重庆22)(本小题满分12分,(Ⅰ)小问6分.(Ⅱ)小问6分)
设各项均为正数的数列{an}满足.
(Ⅰ)若求a3,a4,并猜想a2008的值(不需证明);
(Ⅱ)若对n≥2恒成立,求a2的值.
解:(I)因a1=2,a2=2-2,故
由此有a1=2(-2)0, a2=2(-2)4, a3=2(-2)2, a4=2(-2)3,
从而猜想an的通项为
,
所以a2xn=.
(Ⅱ)令xn=log2an.则a2=2x2,故只需求x2的值。
设Sn表示x2的前n项和,则a1a2…an=,由2≤a1a2…an<4得
≤Sn=x1+x2+…+xn<2(n≥2).
因上式对n=2成立,可得≤x1+x2,又由a1=2,得x1=1,故x2≥.
由于a1=2,(n∈N*),得(n∈N*),即
,
因此数列{xn+1+2xn}是首项为x2+2,公比为的等比数列,故
xn+1+2xn=(x2+2) (n∈N*).
将上式对n求和得
Sn+1-x1+2Sn=(x2+2)(1++…+)=(x2+2)(2-)(n≥2).
因Sn<2,Sn+1<2(n≥2)且x1=1,故
(x2+2)(2-)<5(n≥2).
因此2x2-1<(n≥2).
下证x2≤,若淆,假设x2>,则由上式知,不等式
2n-1<
对n≥2恒成立,但这是不可能的,因此x2≤.
又x2≥,故z2=,所以a2=2=.
15.(浙江18)(本题14分)已知数列的首项,通项(为常数),且成等差数列,求:
(Ⅰ)的值;
(Ⅱ)数列的前项的和的公式。
(Ⅰ)解:由,得,
又,,且,得
,
解得,.
(Ⅱ)解:
.
14.(天津20)(本小题满分12分)
已知数列中,,,且.
(Ⅰ)设,证明是等比数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)若是与的等差中项,求的值,并证明:对任意的,是与的等差中项.
(Ⅰ)证明:由题设,得
,
即
.
又,,所以是首项为1,公比为的等比数列.
(Ⅱ)解:由(Ⅰ),
,
,
……
.
将以上各式相加,得.所以当时,
上式对显然成立.
(Ⅲ)解:由(Ⅱ),当时,显然不是与的等差中项,故.
由可得,由得
, ①
整理得,解得或(舍去).于是
.
另一方面,
,
.
由①可得
.
所以对任意的,是与的等差中项.
13.(四川21)(本小题满分12分)
设数列的前项和为,
(Ⅰ)求
(Ⅱ)证明: 是等比数列;
(Ⅲ)求的通项公式
[解]:(Ⅰ)因为,所以
由知
得 ①
所以
(Ⅱ)由题设和①式知
所以是首项为2,公比为2的等比数列。
(Ⅲ)
12.(上海21)(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知数列:,,,(是正整数),与数列
:,,,,(是正整数).
记.
(1)若,求的值;
(2)求证:当是正整数时,;
(3)已知,且存在正整数,使得在,,,中有4项为100.求的值,并指出哪4项为100.
[解](1)
………………..2分
∵ ………………..4分
[证明](2)用数学归纳法证明:当
① 当n=1时,等式成立….6分
② 假设n=k时等式成立,即
那么当时,
………8分
等式也成立.
根据①和②可以断定:当…………………...10分
[解](3)
………………………..13分
∵ 4m+1是奇数,均为负数,
∴ 这些项均不可能取到100. ………………………..15分
此时,为100. …………………………18分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com