题目列表(包括答案和解析)
18.(本小题满分12分)
某校有一贫困学生因病需手术治疗,但现在还差手术费1.1万元。团委计划在全校开展爱心募捐活动,为了增加活动的趣味性吸引更多学生参与,特举办“摇奖100%中奖”活动。凡捐款10元便可享受一次摇奖机会,如图是摇奖机的示意图,摇奖机的旋转盘是均匀的,扇形区域A,B,C,D,E所对应的圆心角的比值分别为1:2:3:4:5。相应区域分别设立一、二、三、四、五等奖,奖品分别为价值5元、4元、3元、2元、1元的学习用品。摇奖时,转动圆盘片刻,待停止后,固定指针指向哪个区域(边线忽略不计)即可获得相应价值的学习用品(如图指针指向区域,可获得价值3元的学习用品)。
(1)预计全校捐款10元者将会达到1500人次,那么除去购买学习用品的款项后,剩余款项是否能帮助该生完成手术治疗?
(2)如果学生甲捐款20元,获得了两次摇奖机会,求他获得价值6元时的学习用品的概率。
17.(本小题满分12分)
设函数。
(1)写出函数的最小正周期及单调递减区间;
(2)当时,函数的最大值与最小值的和为,求的图象、y轴的正半轴及x轴的正半轴三者围成图形的面积。
16.电视机的使用寿命与显像管开关的次数有关。某品牌的电视机的显像管开关了10000次还能继续使用的概率是0.96,开关了15000次后还能继续使用的概率是0.80,则已经开关了10000次的电视机显像管还能继续使用到15000次的概率是 。
15.已知抛物线
。
14.在
= 。
13.由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“a·b=b·a”;
②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;
③“t≠0,mt=nt”类比得到“”;
④“”类比得到“”。
以上类比得到的正确结论的序号是 (写出所有正确结论的序号)。
12.一支足球队每场比赛获胜(得3分)的概率为a,与对手踢平(得1分)的概率为b,负于对手(得0分)的概率为c(a,b,c∈(0,1)),已知该足球队进行一场比赛得分的期望是1,则的最小值为 ( )
A. B. C. D.
第Ⅱ卷(非选择题 共90分)
11.已知在平面直角坐标系满足条件
则的最大值为 ( )
A.-1 B.0 C.3 D.4
10.已知函数上的奇函数,当x>0时,的大致图象为 ( )
9.给出下列四个命题,其中正确的一个是 ( )
A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%
B.在独立性检验时,两个变量的2×2列表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大
C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越好
D.随机误差e是衡量预报精确度的一个量,它满足E(e)=0
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com