题目列表(包括答案和解析)
4.(文)在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为( )
A.1∶ B.1∶9 C.1∶ D.1∶
(理)已知数列的通项公式是,其中a、b均为正常数,那么与的大小关系是( )
A. B.
C. D.与n的取值相关
3.在复平面中,已知点A(2,1),B(0,2),C(-2,1),O(0,0).给出下面的结论:
①直线OC与直线BA平行;
②;
③;
④.
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
2.(文)下列函数中,周期为的奇函数是( )
A. B.
C. D.
(理)方程(t是参数,)表示的曲线的对称轴的方程是( )
A. B.
C. D.
1.(文)已知命题甲为x>0;命题乙为,那么( )
A.甲是乙的充分非必要条件
B.甲是乙的必要非充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件,也不是乙的必要条件
(理)已知两条直线∶ax+by+c=0,直线∶mx+ny+p=0,则an=bm是直线的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
22.(14分)(理)已知函数,记函数,,,…,,…,考察区间A=(-∞,0),对任意实数,有,,且n≥2时,,问:是否还有其它区间,对于该区间的任意实数x,只要n≥2,都有?
(文)已知二次函数的二次项系数为负,对任意实数x都有,问当与满足什么条件时才有-2<x<0?
21.(12分)在Rt△ABC中,∠CAB=90°,AB=2,AC=,一曲线E过C点,动点P在曲线E上运动,且保持的值不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)直线l:与曲线E交于M,N两点,求四边形MANB的面积的最大值.
20.如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上侧,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.
(1)求证:PQ⊥BD;
(2)求二面角P-BD-Q的余弦值;
(3)求点P到平面QBD的距离;
19.已知:(a>1>b>0).
(1)求的定义域;
(2)判断在其定义域内的单调性;
(3)若在(1,+∞)内恒为正,试比较a-b与1的大小.
18.(12分)已知a、b、m、,是首项为a,公差为b的等差数列;是首项为b,公比为a的等比数列,且满足.
(1)求a的值;
(2)数列与数列的公共项,且公共项按原顺序排列后构成一个新数列,求的前n项之和.
17.(12分)已知a=(,),b=(,),a与b之间有关系式|ka+b|=|a-kb|,其中k>0.
(1)用k表示a、b;
(2)求a·b的最小值,并求此时,a与b的夹角的大小.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com