题目列表(包括答案和解析)
19. 对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “M类数列”.
(1)若,,,数列、是否为“M类数列”?若是,指出它对应的实常数,若不是,请说明理由;
(2)证明:若数列是“M类数列”,则数列也是“M类数列”;
(3)若数列满足,,为常数.求数列前项的和.并判断是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列的相邻两项、,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.
18. 在平面直角坐标系中,已知圆的圆心在第二象限,半径为且与直线相切于原点.椭圆与圆的一个交点到椭圆两焦点的距离之和为.
(1)求圆的方程;
(2)圆上是否存在点,使关于直线为圆心,为椭圆右焦点)对称,若存在,请求出点的坐标;若不存在,请说明理由.
17. 某商品每件成本价80元,售价100元,每天售出100件.若售价降低x成(1成=10%),售出商品数量就增加成,要求售价不能低于成本价.
(1)设该商店一天的营业额为y,试求y与x之间的函数关系式,并写出定义域;
(2)若再要求该商品一天营业额至少10260元,求x的取值范围.
16.如图,已知四棱锥的底面是边长为的正方形,底面,且.
(1) 若点、分别在棱、上,且,,求证:平面;
(2) 若点在线段上,且三棱锥的体积为,试求线段的长.
15. 中,三个内角A、B、C所对的边分别为、、,若, .
(1)求角的大小;
(2)已知当时,函数的最大值为3,求的面积.
14. )给出下列命题:(1)三点确定一个平面;(2)在空间中,过直线外一点只能作一条直线与该直线平行;(3)若平面上有不共线的三点到平面的距离相等,则;(4)若直线满足则.其中正确命题的个数是_____________
13. 在实数数列中,已知,,,…,,则的最大值为_____________
12. 已知函数若,则的取值范围是_____________
11. 在一个水平放置的底面半径为cm的圆柱形量杯中装有适量的水,现放入一个半径为cm的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升cm,则________cm.
10. 设,若仅有一个常数c使得对于任意的,都有满足方程,这时,的取值的集合为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com