题目列表(包括答案和解析)
5.(2010湖南文数) 设抛物线上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是
A. 4 B. 6 C. 8 D. 12
(2010浙江理数)(8)设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为
(A) (B) (C) (D)
解析:利用题设条件和双曲线性质在三角形中寻找等量关系,得出a与b之间的等量关系,可知答案选C,本题主要考察三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考察,属中档题
(2010全国卷2理数)(12)已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.若,则
(A)1 (B) (C) (D)2
[答案]B
[命题意图]本试题主要考察椭圆的性质与第二定义.
[解析]设直线l为椭圆的有准线,e为离心率,过A,B分别作AA1,BB1垂直于l,A1,B为垂足,过B作BE垂直于AA1与E,由第二定义得,,由,得,∴
即k=,故选B.
9.D
[解析]画出图形,设动点A与轴正方向夹角为,则时,每秒钟旋转,在上,在上,动点的纵坐标关于都是单调递增的。
[方法技巧]由动点在圆上绕坐标原点沿逆时针方向匀速旋转,可知与三角函数的定义类似,由12秒旋转一周能求每秒钟所转的弧度,画出单位圆,很容易看出,当t在变化时,点的纵坐标关于(单位:秒)的函数的单调性的变化,从而得单调递增区间.
1. (2010安徽理数)9、动点在圆上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。已知时间时,点的坐标是,则当时,动点的纵坐标关于(单位:秒)的函数的单调递增区间是
A、 B、 C、 D、和
4.A
[解析]设直线方程为,又经过,故,所求方程为.
[方法技巧]因为所求直线与与直线x-2y-2=0平行,所以设平行直线系方程为,代入此直线所过的点的坐标,得参数值,进而得直线方程.也可以用验证法,判断四个选项中方程哪一个过点(1,0)且与直线x-2y-2=0平行.
(2010重庆文数)(8)若直线与曲线()有两个不同的公共点,则实数的取值范围为
(A) (B)
(C) (D)
解析:化为普通方程,表示圆,
因为直线与圆有两个不同的交点,所以解得
法2:利用数形结合进行分析得
同理分析,可知
(2010重庆理数)(8) 直线y=与圆心为D的圆交与A、B两点,则直线AD与BD的倾斜角之和为
A. B. C. D.
解析:数形结合
由圆的性质可知
故
(2010广东文数)
(2010全国卷1理数)(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为
(A) (B) (C) (D)
8.(2010江西理数)直线与圆相交于M,N两点,若,则k的取值范围是
A. B. C. D.
[答案]A
[解析]考查直线与圆的位置关系、点到直线距离公式,重点考察数形结合的运用.
解法1:圆心的坐标为(3.,2),且圆与y轴相切.当,由点到直线距离公式,解得;
解法2:数形结合,如图由垂径定理得夹在两直线之间即可, 不取,排除B,考虑区间不对称,排除C,利用斜率估值,选A
(2010安徽文数)(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是
(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0
4. (2010江苏卷)4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。
[解析]考查频率分布直方图的知识。
100×(0.001+0.001+0.004)×5=30
3. (2010江苏卷)3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.
[解析]考查古典概型知识。
13.(2010福建理数)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 。
[答案]0.128
[解析]由题意知,所求概率为。
[命题意图]本题考查独立重复试验的概率,考查基础知识的同时,进一步考查同学们的分析问题、解决问题的能力。K^S*5U.C#O%
14.[答案]0.4
[解析]由表格可知:
联合解得.
2. (2010湖北理数)14.某射手射击所得环数的分布列如下:
|
7 |
8 |
9 |
10 |
P |
x |
0.1 |
0.3 |
y |
已知的期望E=8.9,则y的值为 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com