题目列表(包括答案和解析)
3、(2010江西理数)6. 展开式中不含项的系数的和为( )
A.-1 B.0 C.1 D.2
[答案]B
[解析]考查对二项式定理和二项展开式的性质,重点考查实践意识和创新能力,体现正难则反。采用赋值法,令x=1得:系数和为1,减去项系数即为所求,答案为0.
2、(2010全国卷2文数)(9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有
(A) 12种 (B) 18种 (C) 36种 (D) 54种
[解析]B:本题考查了排列组合的知识
∵先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有,余下放入最后一个信封,∴共有
1、(2010全国卷2理数)(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有
(A)12种 (B)18种 (C)36种 (D)54种
[答案]B
[命题意图]本试题主要考察排列组合知识,考察考生分析问题的能力.
[解析]标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.
46、(2010全国卷2理数)(17)(本小题满分10分)
中,为边上的一点,,,,求.
[命题意图]本试题主要考查同角三角函数关系、两角和差公式和正弦定理在解三角形中的应用,考查考生对基础知识、基本技能的掌握情况.
45、(2010浙江理数)(18)(本题满分l4分)在△ABC中,角A、B、C所对的边分别为a,b,c,已知
(I)求sinC的值;
(Ⅱ)当a=2, 2sinA=sinC时,求b及c的长.
解析:本题主要考察三角变换、正弦定理、余弦定理等基础知识,同事考查运算求解能力。
(Ⅰ)解:因为cos2C=1-2sin2C=,及0<C<π
所以sinC=.
(Ⅱ)解:当a=2,2sinA=sinC时,由正弦定理,得
c=4
由cos2C=2cos2C-1=,J及0<C<π得
cosC=±
由余弦定理c2=a2+b2-2abcosC,得
b2±b-12=0
所以 b= b=
c=4 或 c=4
44、(2010湖南文数)16. (本小题满分12分)
已知函数
(I)求函数的最小正周期。
(II) 求函数的最大值及取最大值时x的集合。
43、(2010上海文数)19.(本题满分12分)
已知,化简:
.
解析:原式=lg(sinx+cosx)+lg(cosx+sinx)-lg(sinx+cosx)2=0.
42、(2010江苏卷)13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,,则=____▲_____。
[解析] 考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。一题多解。
(方法一)考虑已知条件和所求结论对于角A、B和边a、b具有轮换性。
当A=B或a=b时满足题意,此时有:,,,
,= 4。
(方法二),
41、(2010江苏卷)10、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____。
[解析] 考查三角函数的图象、数形结合思想。线段P1P2的长即为sinx的值,
且其中的x满足6cosx=5tanx,解得sinx=。线段P1P2的长为
40、(2010福建理数)14.已知函数和的图象的对称轴完全相同。若,则的取值范围是 。
[答案]
[解析]由题意知,,因为,所以,由三角函数图象知:
的最小值为,最大值为,所以的取值范围是。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com