题目列表(包括答案和解析)
3.(上海春卷5)若椭圆上一点P到焦点的距离为6,则点P到另一个焦点的距离是_________。
答案:4
解析:由椭圆的定义知,,故。
2.(全国Ⅰ卷理16文16)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为 .
[答案]
[命题意图]本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.
[解析]如图,,
作轴于点D1,则由,得
,所以,
即,由椭圆的第二定义得
又由,得,整理得.
两边都除以,得,解得.
1.(湖北卷文15)已知椭圆的两焦点为,点满足,则||+|的取值范围为_______,直线与椭圆C的公共点个数_____。
[答案]
[解析]依题意知,点P在椭圆内部.画出图形,由数形结合可得,当P在原点处时,当P在椭圆顶点处时,取到为,故范围为.因为在椭圆的内部,则直线上的点(x, y)均在椭圆外,故此直线与椭圆不可能有交点,故交点数为0个.
4.(四川卷理9文10)椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是
(A) (B) (C) (D)
解析:由题意,椭圆上存在点P,使得线段AP的垂直平分线过点,即F点到P点与A点的距离相等而|FA|= |PF|∈[a-c,a+c]
于是∈[a-c,a+c] 即ac-c2≤b2≤ac+c2
∴Þ又e∈(0,1)故e∈
答案:D
3.(全国Ⅱ卷理12文12)已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.若,则
(A)1 (B) (C) (D)2
[答案]B
[命题意图]本试题主要考察椭圆的性质与第二定义.
[解析]设直线l为椭圆的有准线,e为离心率,过A,B分别作AA1,BB1垂直于l,A1,B为垂足,过B作BE垂直于AA1与E,由第二定义得,,由,得,∴
即k=,故选B.
2.(广东卷文7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是
A. B. C. D.
1.(福建卷文11)若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为
A.2 B.3 C.6 D.8
[答案]C
[解析]由题意,F(-1,0),设点P,则有,解得,
因为,,所以
==,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最大值,选C。
[命题意图]本题考查椭圆的方程、几何性质、平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力。
6.(上海春卷22)在平面上,给定非零向量,对任意向量,定义。
(1)若,求;
(2)若,证明:若位置向量的终点在直线上,则位置向量的终点也在一条直线上;
(3)已知存在单位向量,当位置向量的终点在抛物线上时,位置向量终点总在抛物线上,曲线C和C′关于直线l对称,问直线l与向量满足什么关系?
5. (四川卷理20)已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N
(Ⅰ)求E的方程;
(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.
4.(湖南卷文19)为了考察冰川的融化状况,一支科考队在某冰川山上相距8Km的A、B两点各建一个考察基地,视冰川面为平面形,以过A、B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图4)。考察范围到A、B两点的距离之和不超过10Km的区域。
求考察区域边界曲线的方程:
如图4所示,设线段 是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍。问:经过多长时间,点A恰好在冰川边界线上?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com