题目列表(包括答案和解析)
(Ⅰ)基础知识详析
1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方
程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.
5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|。
4.掌握简单不等式的解法。
3.掌握分析法、综合法、比较法证明简单的不等式。
2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
1.理解不等式的性质及其证明。
6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识..
5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.
4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;
3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com