题目列表(包括答案和解析)
3. 在△ABC中,,则△ABC为( )
A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 无法判定
2. 函数的最小正周期是( )
A. B. C. D.
1. 已知,,则( )
A. B. C. D.
21.解:(1)因为,,,
所以, 即.
当m=0时,方程表示两直线,方程为;
当时, 方程表示的是圆
当且时,方程表示的是椭圆;
当时,方程表示的是双曲线.
(2).当时, 轨迹E的方程为,设圆心在原点的圆的一条切线为,解方程组得,即,
要使切线与轨迹E恒有两个交点A,B,
则使△=,
即,即, 且
,
要使, 需使,即,
所以, 即且, 即恒成立.
所以又因为直线为圆心在原点的圆的一条切线,
所以圆的半径为,, 所求的圆为.
当切线的斜率不存在时,切线为,与交于点或也满足.
综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.
(3)当时,轨迹E的方程为,设直线的方程为,因为直线与圆C:(1<R<2)相切于A1, 由(2)知, 即 ①,
因为与轨迹E只有一个公共点B1,
由(2)知得,
即有唯一解
则△=, 即, ②
由①②得, 此时A,B重合为B1(x1,y1)点,
由 中,所以,,
B1(x1,y1)点在椭圆上,所以,所以,
在直角三角形OA1B1中,因为当且仅当时取等号,所以,即
当时|A1B1|取得最大值,最大值为1.
[命题立意]:本题主要考查了直线与圆的方程和位置关系,以及直线与椭圆的位置关系,可以通过解方程组法研究有没有交点问题,有几个交点的问题.
21. 设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
20.解:(1)直线y=x与曲线的交点可由
求得交点为(1,1)和(4,4),此时在区间[1,4]上图象在直线y=x的下面,即恒成立,所以m的最大值为4。
(2)设曲线上关于直线y=x的对称点为A()和B(),线段AB的中点M(),直线AB的方程为:
(1分)
又因为AB中点在直线y=x上,所以
得 9分
(3)设P的坐标为,过P的切线方程为:,则有
直线的两根,
则 14分
20. 已知函数
(1)当恒成立,求实数m的最大值;
(2)在曲线上存在两点关于直线对称,求t的取值范围;
(3)在直线的两条切线l1、l2,求证:l1⊥l2
19.解:(1)设为动圆圆心,由题意知:到定直线的距离,
由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线,
∴ 动圆的圆心的轨迹的方程为: ………………………5分
(2)由题意可设直线的方程为,
由 得
或 ………………………7分
且, …………………………………9分
由 …………………………………………11分
或(舍去) …………………13分
又,所以直线存在,其方程为: ………………14分
19. 已知动圆过定点,且与直线相切.
(1) 求动圆的圆心轨迹的方程;
(2) 是否存在直线,使过点,并与轨迹交于两点,
且满足?若存在,求出直线的方程;若不存在,说明理由.
18.解 (1),.
设圆的方程是
令,得;令,得
,即:的面积为定值.
(2)垂直平分线段.
,直线的方程是.
,解得:
当时,圆心的坐标为,,
此时到直线的距离,
圆与直线相交于两点.
当时,圆心的坐标为,,
此时到直线的距离
圆与直线不相交,
不符合题意舍去.
圆的方程为.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com