题目列表(包括答案和解析)
4、某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为( )
A. B. C. D. 中学学科
3.(2009全国卷Ⅱ文) 已知正四棱柱中,=,为重点,则异面直线与所形成角的余弦值为( )
A. B. C. D.
2、在△ABC中,,若使绕直线旋转一周,则所形成的几何体的体积是( )
A. B. C. D.
1、(2009山东卷理)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
5. 已知:四棱柱的三视图如下
⑴ 画出此四棱柱的直观图,并求出四棱柱的体积
⑵ 若为上一点,平面,试确定点位置,并证明平面
解:⑴
⑵ 作交于,连,则共面
4.(2009江西卷文)(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面交于点.
(1)求证:平面⊥平面;
(2)求直线与平面所成的角;
(3)求点到平面的距离.
解:方法(一):
(1)证:依题设,M在以BD为直径的球面上,则BM⊥PD.
因为PA⊥平面ABCD,则PA⊥AB,又AB⊥AD,
所以AB⊥平面PAD,则AB⊥PD,因此有PD⊥平面ABM,所以平面ABM⊥平面PCD.
(2)设平面ABM与PC交于点N,因为AB∥CD,所以AB∥平面PCD,则AB∥MN∥CD,
由(1)知,PD⊥平面ABM,则MN是PN在平面ABM上的射影,
所以 就是与平面所成的角,
且
所求角为
(3)因为O是BD的中点,则O点到平面ABM的距离等于D点到平面ABM距离的一半,由(1)知,PD⊥平面ABM于M,则|DM|就是D点到平面ABM距离.
因为在Rt△PAD中,,,所以为中点,,则O点到平面ABM的距离等于。
3.(2009全国卷Ⅱ文)(本小题满分12分)
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1
(Ⅰ)证明:AB=AC
(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小
解析:本题考查线面垂直证明线面夹角的求法,第一问可取BC中点F,通过证明AF⊥平面BCC1,再证AF为BC的垂直平分线,第二问先作出线面夹角,即证四边形AFED是正方形可证平面DEF⊥平面BDC,从而找到线面夹角求解。此题两问也可建立空间直角坐标系利用向量法求解。
解法一:(Ⅰ)取BC中点F,连接EF,则EF,从而EFDA。
连接AF,则ADEF为平行四边形,从而AF//DE。又DE⊥平面,故AF⊥平面,从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC。
(Ⅱ)作AG⊥BD,垂足为G,连接CG。由三垂线定理知CG⊥BD,故∠AGC为二面角A-BD-C的平面角。由题设知,∠AGC=600..
设AC=2,则AG=。又AB=2,BC=,故AF=。
由得2AD=,解得AD=。
故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。
因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。
连接CH,则∠ECH为与平面BCD所成的角。
因ADEF为正方形,AD=,故EH=1,又EC==2,
所以∠ECH=300,即与平面BCD所成的角为300.
解法二:
(Ⅰ)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A-xyz。
设B(1,0,0),C(0,b,0),D(0,0,c),则(1,0,2c),E(,,c).
于是=(,,0),=(-1,b,0).由DE⊥平面知DE⊥BC, =0,求得b=1,所以 AB=AC。
(Ⅱ)设平面BCD的法向量则又=(-1,1, 0),
=(-1,0,c),故
令x=1, 则y=1, z=,=(1,1, ).
又平面的法向量=(0,1,0)由二面角为60°知,=60°,
故 °,求得 于是 ,
,°
所以与平面所成的角为30°
1(2009江苏卷)
如图,在直三棱柱中,、分别是、的中点,点在上,。
求证:(1)EF∥平面ABC;
(2)平面平面.
2.如图,在五面体中,点是矩形的对角线的交点,面是等边三角形,棱.中学高.考.资.源.网
(1) 证明//平面;
(2) 设,证明平面.
证明:(Ⅰ)取CD中点M,连结OM.在矩形ABCD中,,又,则,中学学
连结EM,于是四边形EFOM为平行四边形. 又平面CDE, EM平面CDE,∴ FO∥平面CDE
(Ⅱ)证明:连结FM,由(Ⅰ)和已知条件,在等边△CDE中,且.
因此平行四边形EFOM为菱形,从而EO⊥FM而FM∩CD=M,
∴CD⊥平面EOM,从而CD⊥EO. 而,所以EO⊥平面CDF. 高
6.[答案]D
[解析]:①取前面棱的中点,证AB平行平面MNP即可;③可证AB与MP平行
5.[答案]B
[解析]:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com