题目列表(包括答案和解析)

 0  55116  55124  55130  55134  55140  55142  55146  55152  55154  55160  55166  55170  55172  55176  55182  55184  55190  55194  55196  55200  55202  55206  55208  55210  55211  55212  55214  55215  55216  55218  55220  55224  55226  55230  55232  55236  55242  55244  55250  55254  55256  55260  55266  55272  55274  55280  55284  55286  55292  55296  55302  55310  447348 

45. 三角形、四边形、正六边形、圆,其中一定是平面图形的有________3个。

解析:三角形的三个顶点不在一条直线上,故可确定一个平面,三角形在这个平面内;圆上任取三点一定不在一条直线上,这三点即确定一个平面,也确定了这个圆所在的平面,所以圆是平面图形;而正六边形内接于圆,故正六边形也是平面图形;而四边形就不一定是平面图形了,它的四个顶点可以不在同一平面内。

试题详情

44. 空间一条直线及不在这条直线上的两个点,如果连结这两点的直线与已知直线_______,则它们在同一平面内。答案:相交或平行

解析:根据推论2,推论3确定平面的条件。

试题详情

43. 如果一条直线上有一个点不在平面上,则这条直线与这个平面的公共点最多有____1个。

解析:如果有两个,则直线就在平面内,那么直线上的所有点都在这个平面内,这就与已知有一个点不在平面上矛盾,所以这条直线与这个平面的公共点最多有一个。

试题详情

42. 下列命题中正确的个数是  [   ]

①三角形是平面图形  ②四边形是平面图形

③四边相等的四边形是平面图形   ④矩形一定是平面图形

A.1个   B.2个  C.3个  D.4个

解析:命题①是正确的,因为三角形的三个顶点不共线,所以这三点确定平面。

命题②是错误,因平面四边形中的一个顶点在平面的上、下方向稍作运动,就形成了空间四边形。命题③也是错误,它是上一个命题中比较特殊的四边形。

命题④是正确的,因为矩形必须是平行四边形,有一组对边平行,则确定了一个平面。

试题详情

80.  已知:平面与平面相交于直线a,直线b都平行,求证:ba

证明:在a上取点PbP确定平面交于交于

bb

bb

重合,而,实际上是a三线重合,

ab

试题详情

79. 如图,已知a、b是两条相互垂直的异面直线,其公垂线段AB的长为定值m,定长为n(n>m)的线段PQ的两个端点分别在a、b上移动,M、N分别是AB、PQ的中点。

            (1)求证:AB⊥MN;

          (2)求证:MN的长是定值(14分)

解析:

试题详情

78. 在正方体ABCD-A1B1C1D1,G为CC1的中点,O为底面ABCD的中心。

            求证:A1O⊥平面GBD(14分)

解析:

试题详情

77. .如图,ABCD为正方形,过A作线段SA⊥面ABCD,又过A作与SC垂直的平面交SB、SC、SD于E、K、H,求证:E、H分别是点A在直线SB和SD上的射影。(12分)

   

解析:

试题详情

76. 如图,已知

   求证al

解析:

试题详情

75. 设P、Q是单位正方体AC1的面AA1D1D、面A1B1C1D1的中心。

            如图:(1)证明:PQ∥平面AA1B1B;

          (2)求线段PQ的长。(12分)

 

评注:本题提供了两种解法,方法一,通过平行四边形的对边平行得到“线线平行”,从而证得“线面平行”;方法二,通过三角形的中位线与底边平行得到“线线平行”,从而证得“线面平行”。本题证法较多。

试题详情


同步练习册答案