题目列表(包括答案和解析)
5.在二面角α-l-β的两个面α,β内,分别有直线a,b,它们与棱l都不垂直,则( )
A.当该二面角是直二面角时,可能a∥b,也可能a⊥b
B.当该二面角是直二面角时,可能a∥b,但不可能a⊥b
C.当该二面角不是直二面角时,可能a∥b,但不可能a⊥b
D.当该二面角不是直二面角时,不可能a∥b,也不可能a⊥b
解析:选B.当该二面角为直二面角时(如图),若a⊥b,∵b与l不垂直,在b上取点A,过A作AB⊥l,AB∩b=A,
由⇒⇒a⊥β⇒a⊥l.
这和a与l不垂直相矛盾.
∴不可能a⊥b.故A错误,
∴B正确.
4.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB中点,PM垂直于△ABC所在平面,那么( )
A.PA=PB>PC
B.PA=PB<PC
C.PA=PB=PC
D.PA≠PB≠PC
解析:选C.∵M是Rt△ABC斜边AB的中点,
∴MA=MB=MC.
又∵PM⊥平面ABC,∴MA、MB、MC分别是PA、PB、PC在平面ABC上的射影.∴PA=PB=PC.应选C.
3.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )
A.直线AB上
B.直线BC上
C.直线AC上
D.△ABC内部
解析:选A.∵BA⊥AC,BC1⊥AC,BA∩BC1=B,
∴AC⊥平面ABC1.
∵AC⊂平面ABC,∴平面ABC⊥平面ABC1,且交线是AB.故平面ABC1上一点C1在底面ABC的射影H必在交线AB上.
2.设a、b是不同的直线,α、β是不同的平面,则下列四个命题中正确的是( )
A.若a⊥b,a⊥α,则b∥α
B.若a∥α,α⊥β,则a⊥β
C.若a⊥β,α⊥β,则a∥α
D.若a⊥b,a⊥α,b⊥β,则α⊥β
解析:选D.A中,b可能在α 内;B中,a可能在β内,也可能与β平行或相交(不垂直);C中,a可能在α内;D中,a⊥b,a⊥α,则b⊂α或b∥α,又b⊥β,∴α⊥β.
1.若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真命题的是( )
A.若m⊂β,α⊥β,则m⊥α
B.若α∩γ=m,β∩γ=n,m∥n,则α∥β
C.若α⊥γ,α⊥β,则β∥γ
D.若m⊥β,m∥α,则α⊥β
解析:选D.对于选项D,若m∥α,则过直线m的平面与平面α相交得交线n,由线面平行的性质定理可得m∥n,又m⊥β,故n⊥β,且n⊂α,故由面面垂直的判定定理可得α⊥β.
6.(2008年高考江苏卷)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点,求证:
(1)直线EF∥平面ACD;
(2)平面EFC⊥平面BCD.
证明:(1)在△ABD中,因为E、F分别是AB、BD的中点,
所以EF∥AD.
又AD⊂平面ACD,EF⊄平面ACD,
所以直线EF∥平面ACD.
(2)在△ABD中,因为AD⊥BD,
EF∥AD,所以EF⊥BD.
在△BCD中,因为CD=CB,F为BD的中点,
所以CF⊥BD.
因为EF⊂平面EFC,CF⊂平面EFC,
EF与CF交于点F,
所以BD⊥平面EFC.
又因为BD⊂平面BCD,
所以平面EFC⊥平面BCD.
练习
5.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足__________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
解析:由定理可知,BD⊥PC.
∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,
而PC⊂平面PCD,∴平面MBD⊥平面PCD.
答案:DM⊥PC(或BM⊥PC等)
4.已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a⊂α,b⊂β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有________.
解析:垂直于同一直线的两平面平行,①正确;α⊥β也成立,②错;a、b也可异面,③错;由面面平行性质知,a∥b,④正确.
答案:①④
3.若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )
A.若α∥β,l⊂α,n⊂β,则l∥n
B.若α⊥β,l⊂α,则l⊥β
C.若l⊥n,m⊥n,则l∥m
D.若l⊥α,l∥β,则α⊥β
解析:选D.选项A中,l除平行n外,还有异面的位置关系,则A不正确.选项B中,l与β的位置关系有相交、平行、在β内三种,则B不正确.选项C中,l与m的位置关系还有相交和异面,故C不正确.故选D.
2.设a、b、c表示三条直线,α、β表示两个平面,则下列命题的逆命题不成立的是( )
A.c⊥α,若c⊥β,则α∥β
B.b⊂α,c⊄α,若c∥α,则b∥c
C.b⊂β,若b⊥α,则β⊥α
D.b⊂β,c是a在β内的射影,若b⊥c,则b⊥a
解析:选C.C选项的逆命题为b⊂β,若β⊥α则b⊥α.不正确,因为根据平面垂直的性质定理,如果两个平面垂直,其中一个平面内的直线只有垂直于交线的才垂直另一个平面.故选C.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com