题目列表(包括答案和解析)
123. 河堤斜面与水平面所成角为60°,堤面上有一条直道CD,它与堤角的水平线AB的夹角为30°,沿着这条直道从堤角向上行走到10米时,人升高了多少(精确到0.1米)?
解析: 已知 所求
河堤斜面与水平面所成角为60° E到地面的距离
利用E或G构造棱上一点F 以EG为边构造三角形
解:取CD上一点E,设CE=10 m,过点E作直线AB所在的水平面的垂线EG,垂足为G,则线段EG的长就是所求的高度.
在河堤斜面内,作EF⊥AB.垂足为F,连接FG,由三垂线定理的逆定理,知FG⊥AB.因此,∠EFG就是河堤斜面与水平面ABG所成的二面角的平面角,∠EFG=60°.
由此得:
EG=EFsin60°
=CE sin30°sin60°
=10××≈4.3(m)
答:沿着直道向上行走到10米时,人升高了约4.3米.
122. 在四面体ABCD中,AB=AD=BD=2,BC=DC=4,二面角A-BD-C的大小为60°,求AC的长.
解析:作出二面角A-BD-C的平面角
在棱BD上选取恰当的点
AB=AD,BC=DC
解:取BD中点E,连结AE,EC
∵ AB=AD,BC=DC
∴ AE⊥BD,EC⊥BD
∴ ∠AEC为二面角A-BD-C的平面角
∴ ∠AEC=60°
∵ AD=2,DC=4
∴ AE=,EC=
∴ 据余弦定理得:AC=.
121. 已知:如图12,P是正方形ABCD所在平面外一点,PA=PB=PC=PD=a,AB=a.
求:平面APB与平面CPD相交所成较大的二面角的余弦值.
分析:为了找到二面角及其平面角,必须依据题目的条件,找出两个平面的交线.
解:因为 AB∥CD,CD 平面CPD,AB 平面CPD.
所以 AB∥平面CPD.
又 P∈平面APB,且P∈平面CPD,
因此 平面APB∩平面CPD=l,且P∈l.
所以 二面角B-l-C就是平面APB和平面CPD相交所得到的一个二面角.
因为 AB∥平面CPD,AB 平面APB,平面CPD∩平面APB=l,
所以 AB∥l.
过P作PE⊥AB,PE⊥CD.
因为 l∥AB∥CD,
因此 PE⊥l,PF⊥l,
所以 ∠EPF是二面角B-l-C的平面角.
因为 PE是正三角形APB的一条高线,且AB=a,
因为 E,F分别是AB,CD的中点,
所以 EF=BC=a.
在△EFP中,
140. 三棱柱ABC-A1B1C1中,BAC=900,AB=BB1=1,直线B1C与平面ABC成300角,求二面角B-B1C-A的正弦值。
解析:可以知道,平面ABC与平面BCC1B1垂直,故可由面面垂直的性质来寻找从一个半平面到另一个半平面的垂线。
解:由直三棱柱性质得平面ABC平面BCC1B1,过A作AN平面BCC1B1,垂足为N,则AN平面BCC1B1,(AN即为我们要找的垂线)在平面BCB1内过N作NQ棱B1C,垂足为Q,连QA,则NQA即为二面角的平面角。
∵AB1在平面ABC内的射影为AB,CAAB,∴CAB1A,AB=BB1=1,得AB1=。∵直线B1C与平面ABC成300角,∴B1CB=300,B1C=2,Rt△B1AC中,由勾股定理得AC=,∴AQ=1。在Rt△BAC中,AB=1,AC=,得AN=。
sinAQN==。即二面角B-B1C-A的正弦值为。
139. 在三棱锥P-ABC中, APB=BPC=CPA=600,求二面角A-PB-C的余弦值。
解析:在二面角的棱PB上任取一点Q,在半平面PBA和半平面PBC上作QMPB,QNPB,则由定义可知MQN即为二面角的平面角。
设PM=a,则在RtPQM和RtPQN中可求得QM=QN=a;
又由PQNPQM得PN=a,故在正PMN中MN=a,在MQN中由余弦定理得cosMQN=,即二面角的余弦值为。
138. 相交成90°的两条直线和一个平面所成的角分别是30°和45°,则这两条直线在该平面内的射影所成的锐角是( )
(A) |
(B) |
(C) |
(D) |
解析:分析:设直角顶点到平面的距离是1,所求的角为θ,则.
137. 如图,M、N、P分别是正方体ABCD-A1B1C1D1的三个侧面ABCD、CC1D1D、BCC1B1的中心,则A1M与NP所成的角是( )
(A) 30° |
(B) 45° |
(C) 60° |
(D) 90° |
解析:D如图所示
136. 如图,正方形ABCD所在平面与正方形ABEF所在平面
成60°的二面角,则异面直线AD与BF所成角的余弦值
是 .
解析:
135. 已知如图,P平面ABC,PA=PB=PC,∠APB=∠APC=60°,∠BPC=90 °求证:平面ABC⊥平面PBC
解析:要证明面面垂直,只要在其呈平面内找一条线,然后证明直线与另一平面垂直即可。显然BC中点D,证明AD垂直平PBC即可
证明: 取BC中点D 连结AD、PD
∵PA=PB;∠APB=60°
∴ΔPAB为正三角形
同理ΔPAC为正三角形
设PA=a
在RTΔBPC中,PB=PC=a
BC=a
∴PD=a
在ΔABC中
AD=
=a
∵AD2+PD2=
=a2=AP2
∴ΔAPD为直角三角形
即AD⊥DP
又∵AD⊥BC
∴AD⊥平面PBC
∴平面ABC⊥平面PBC
134. 设S为平面外的一点,SA=SB=SC,,若,求证:平面ASC平面ABC。
解析:(1)把角的关系转化为边的关系
(2)利用棱锥的性质(三棱锥的侧棱相等,则顶点在底面上的射影为底面三角形的外心)
证明:设D为AB的中点
同理
且
即为且S在平面上的射影O为的外心
则O在斜边AC的中点。
平面ABC
平面SAC
平面ASC平面ABC
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com