题目列表(包括答案和解析)
408. 已知四棱锥P-ABCD,它的底面是边长为a的菱形,且∠ABC=120°,PC⊥平面ABCD,又PC=a,E为PA的中点.
(1)求证:平面EBD⊥平面ABCD;
(2)求点E到平面PBC的距离;
(3)求二面角A-BE-D的大小.
(1)证明: 在四棱锥P-ABCD中,底面是菱形,连结AC、BD,交于F,则F为AC的中点.
又E为AD的中点,∴EF∥PC
又∵PC⊥平面ABCD,∴EF⊥平面ABCD.EF平面EBD.
∴平面EBD⊥平面ABCD.
(2)∵EF∥PC,∴EF∥平面PBC
∴E到平面PBC的距离即是EF到平面PBC的距离
过F作FH⊥BC交BC于H,
∵PC⊥平面ABCD,FH平面ABCD
∴PC⊥FH.
又BC⊥FH,∴FH⊥平面PBC,则FH是F到平面PBC的距离,也是E到平面PBC的距离.
∵∠FCH=30°,CF=a.
∴FH=CF=a.
(3)取BE的中点G,连接FG、AG由(1)的结论,平面BDE⊥平面ABCD,AF⊥BD,
∴AF⊥平面BDC.
∵BF=EF=,∴FG⊥BE,由三垂线定理得,AG⊥BE,
∴∠FGA为二面角D-BE-A的平面角.
FG=×=a,AF=a.
∴tg∠FGA==,∠FAG=arctg
即二面角A-BE-D的大小为arctg
407. 如图,在三棱柱ABC-A′B′C′中,四边形A′ABB′是菱形,四边形BCC′B′是矩形,C′B′⊥AB.
(1)求证:平面CA′B⊥平面A′AB;
(2)若C′B′=2,AB=4,∠ABB′=60°,求AC′与平面BCC′B′所成角的大小.(用反三角函数表示)
解析:(1)∵在三棱柱ABC-A′B′C中,C′B′∥CB,∴CB⊥AB.∵CB⊥BB′,AB∩BB′=B,∴CB⊥平面A′AB.∵CB平面CA′B,∴平面CA′B⊥平面A′AB
(2)由四边形A′ABB′是菱形,∠ABB′=60°,连AB′,可知ΔABB′是正三角形.取 B B′中点H,连结AH,则AH⊥BB′.又由C′B′⊥平面A′AB,得平面A′ABB′⊥平面 C′B′BC,而AH垂直于两平面交线BB′,∴AH⊥平面C′B′BC.连结C′H,则∠AC′H为 AC′与平面BCC′B′所成的角,AB′=4,AH=2,于是直角三角形C′B′A中,A′C=5,在RtΔAHC′中,sin∠AC′H=∴∠AC′H=arcsin,∴直线AC′与平面BCC′B′所成的角是arcsin.
406. 如图,在二面角α-l-β中,A、B∈α,C、D∈l,ABCD为矩形,P∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中点.
(1)求二面角α-l-β的大小;
(2)求证:MN⊥AB;
(3)求异面直线PA与MN所成角的大小.
解析:(1)连PD,∵ABCD为矩形,∴AD⊥DC,即AD⊥l.又PA⊥l,∴PD⊥l.
∵P、D∈β,则∠PDA为二面角α-l-β的平面角.
∵PA⊥AD,PA=AD,∴ΔPAD是等腰直角三角形,∴∠PDA=45°,即二面角α-l-β的大小为45°.
(2)过M作ME∥AD,交CD于E,连结NE,则ME⊥CD,NE⊥CD,因此,CD⊥平面MNE,∴CD⊥MN.∵AB∥CD,∴MN⊥AB
(3)过N作NF∥CD,交PD于F,则F为PD的中点.连结AF,则AF为∠PAD的角平线,∴∠FAD=45°,而AF∥MN,∴异面直线PA与MN所成的45°角.
405. 如图,在梯形ABCD中,AD∥BC,∠ABC=,AB=a,AD=3a,且∠ADC=arcsin,又PA⊥平面ABCD,AP=a.求:(1)二面角P-CD-A的大小(用反三角函数表示);(2)点A到平面PBC的距离.
解析:(1)作CD′⊥AD于D′,∴ABCD′为矩形,CD′=AB=a,在RtΔCD′D中.
∵∠ADC=arcsin,即⊥D′DC=arcsin,
∴sin∠CDD′==
∴CD=a ∴D′D=2a
∵AD=3a,∴AD′=a=BC
又在RtΔABC中,AC==a,
∵PA⊥平面ABCD,∴PA⊥AC,PA⊥AD,PA⊥AB.
在RtΔPAB中,可得PB=a.
在RtΔPAC中,可得PC==a.
在RtΔPAD中,PD==a.
∵PC2+CD2=(a)2+(a)=8a2<(a)2
∴cos∠PCD<0,则∠PCD>90°
∴作PE⊥CD于E,E在DC延长线上,连AE,由三垂线定理的逆定理得AE⊥CD,∠AEP为二面角P-CD-A的平面角.
在RtΔAED中∠ADE=arcsin,AD=3a.
∴AE=AD·sin∠ADE=3a·=a.
在RtΔPAE中,tan∠PEA===.
∴∠AEP=arctan,即二面角P-CD-A的大小为arctan.
(2)∵AD⊥PA,AD⊥AB,∴AD⊥平面PAB.
∵BC∥AD,∴BC⊥平面PAB.
∴平面PBC⊥平面PAB,作AH⊥PB于H,∴AH⊥平面PBC.
AH为点A到平面PBC的距离.
在RtΔPAB中,AH===a.
即A到平面PBC的距离为a.
说明 (1)中辅助线AE的具体位置可以不确定在DC延长线上,而直接作AE⊥CD于E,得PE⊥CD,从而∠PEA为所求,同样可得结果,避免过多的推算.(2)中距离的计算,在学习几何体之后可用“等体积法”求.
404. 如果直线l、m与平面α、β、满足l=β∩,l∥α,mα和m⊥.那么必有( )
A.α⊥且l⊥m B.α⊥且m∥β
C.m∥β且l⊥m D.α∥β且α⊥
解析:∵mα,m⊥. ∴α⊥.
又∵m⊥,β∩=l. ∴m⊥l.
∴应选A.
说明 本题考查线面垂直、面面垂直及综合应用推理判断能力及空间想象能力.
403.求证:在已知二面角,从二面角的棱出发的一个半平面内的任意一点,到二面角两个面的距离的比是一个常数.
已知:二面角α-ED-β,平面过ED,A∈,AB⊥α,垂足是B.AC⊥β,垂足是C.
求证:AB∶AC=k(k为常数)
证明:过AB、AC的平面与棱DE交于点F,连结AF、BF、CF.
∵AB⊥α,AC⊥β.∴AB⊥DE,AC⊥DE.
∴DE⊥平面ABC.∴BF⊥DE,AF⊥DE,CF⊥DE.
∠BFA,∠AFC分别为二面角α-DE-,-DE-β的平面角,它们为定值.
在RtΔABF中,AB=AF·sin∠AFB.
在RtΔAFC中,AC=AF·sin∠AFC,得:
==定值.
402.自二面角内一点分别向两个面引垂线,求证:它们所成的角与二面角的平面角互补.
已知:从二面角α-AB-β内一点P,向面α和β分别引垂线PC和PD,它们的垂足是C和D.求证:∠CPD和二面角的平面角互补.
证:设过PC和PD的平面PCD与棱AB交于点E,
∵PC⊥α,PD⊥β
∴PC⊥AB,PD⊥AB
∴CE⊥AB,DE⊥AB
又∵CEα,DEβ,∴∠CED是二面角α-AB-β的平面角.
在四边形PCED内:∠C=90°,∠D=90°
∴∠CPD和二面角α-AB-β的平面∠CBD互补.
401. 如图,在ΔABC中,∠ACB=90°,BC=a,AC=b,D是斜边AB上的点,以CD为棱把它折成直二面角A-CD-B后,D在怎样的位置时,AB为最小,最小值是多少?
解析: 设∠ACD=θ,则∠BCD=90°-θ,作AM⊥CD于M,BN⊥CD于N,于是AM=bsinθ,CN=asinθ.
∴MN=|asinθ-bcosθ|,因为A-CD-B是直二面角,AM⊥CD,BN⊥CD,∴AM与BN成90°的角,于是AB==≥.
∴当θ=45°即CD是∠ACB的平分线时,AB有最小值,最小值为.
420. 在桌面上有三个球两两相切,且半径都为1,在桌面与三球间放置一个小球,使它与三个球相切.求此小球半径.
解析: 如图,球O为放置在桌面上与已知三球相切的半径为r的小球,过O作O1O2O3平面的垂线,垂足为H,它一定是ΔO1O2O3的中心,连接O1H,O1O,在RtΔO1OH中,O1H=,OH=1-r,OO1=1+r,∴OO12=O1H2+OH2,即(1+r)2=()2+(1-r)2,解得r=.
419. 已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧且相距是1,那么这个球的半径是( )
A.4 B.3 C.2 D.5
解析: 如图,设球的半径是r,则πBD2=5π,πAC2=8π,
∴BD2=5,AC2=8.又AB=1,设OA=x.
∴x2+8=r2,(x+1)2+5=r2.
解之,得r=3
故选B.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com