题目列表(包括答案和解析)

 0  55214  55222  55228  55232  55238  55240  55244  55250  55252  55258  55264  55268  55270  55274  55280  55282  55288  55292  55294  55298  55300  55304  55306  55308  55309  55310  55312  55313  55314  55316  55318  55322  55324  55328  55330  55334  55340  55342  55348  55352  55354  55358  55364  55370  55372  55378  55382  55384  55390  55394  55400  55408  447348 

398. 平面α内有半径为R的⊙O,过直径AB的端点A作PA⊥α,PA=a,C是⊙O上一点,∠CAB=600,求三棱锥P-OBC的侧面积。

解析:三棱锥P-OBC的侧面由△POB、△POC、△PBC三个三角形组成

在求出边长元素后,求三角形面积时,应注意分析三角形的形状,简化计算

∵ PA⊥平面ABC

∴ PA⊥AO,AC为PC在平面ABC上的射影

∵ BC⊥AC

∴ BC⊥PC

△                                                                      POB中,

△                                                                      PBC中,BC=ABsin600=2a

∴ AC=a

∴ PC=

△                                                                      POC中,PO=PC=,OC=a

∴ S=

试题详情

397. 斜三棱柱ABC-A1B1C1中,底面是边长为4cm的正三角形,侧棱AA1与底面两边AB、AC均成600的角,AA1=7

  (1)求证:AA1⊥BC;(2)求斜三棱柱ABC-A1B1C1的全面积;(3)求斜三棱柱ABC-A1B1C1的体积;(4)求AA1到侧面BB1C1C的距离。

解析:设A1在平面ABC上的射影为0

∵ ∠A1AB=∠A1AC

∴ O在∠BAC的平行线AM上

∵ △ABC为正三角形

∴ AM⊥BC

又AM为A1A在平面ABC上的射影

∴ A1A⊥BC

  (2)

∵ B1B∥A1A

∴ B1B⊥BC,即侧面BB1C1C为矩形

∴ S=

  (3)∵ cos∠A1AB=cos∠A1AO·cos∠OAB

∴ cos∠A1AO=

∴ sin∠A1AO=

∴ A1O=A1Asin∠A1AO=

  (4)把线A1A到侧面BB1C1C的距离转化为点A或A1到平面BB1C1C的距离

为了找到A1在侧面BB1C1C上的射影,首先要找到侧面BB1C1C的垂面

设平面AA1M交侧面BB1C1C于MM1

∵ BC⊥AM,BC⊥A1A

∴ BC⊥平面AA1M1M

∴ 平面AA1M1M⊥侧面BCC1B1

在平行四边形AA1M1M中

过A1作A1H⊥M1M,H为垂足

则A1H⊥侧面BB1C1C

∴ 线段A1H长度就是A1A到侧面BB1C1C的距离

试题详情

396. 正三棱柱ABC-A1B1C1的底面边长为a,在侧棱BB1上截取BD=,在侧棱CC1上截取CE=a,过A、D、E作棱柱的截面ADE

  (1)求△ADE的面积;(2)求证:平面ADE⊥平面ACC1A1

解析:分别在三个侧面内求出△ADE的边长

AE=a,AD=a,DE=

∴ 截面ADE为等腰三角形

  S=

  (2)∵ 底面ABC⊥侧面AA1C1C

∴ △ABC边AC上的高BM⊥侧面AA1C1C

下设法把BM平移到平面AED中去

取AE中点N,连MN、DN

∵ MNEC,BDEC

∴ MNBD

∴ DN∥BM

∴ DN⊥平面AA1C1C

∴ 平面ADE⊥平面AA1C1C

试题详情

395. 已知直三棱柱ABC-A1B1C1中,∠ACB=900,∠BAC=300,BC=1,AA1=,M为CC1中点,求证:AB1⊥A1M。

解析:因结论是线线垂直,可考虑用三垂线定理或逆定理

∵ ∠ACB=900

∴ ∠A1C1B1=900

即B1C1⊥C1A1

又由CC1⊥平面A1B1C1得:CC1⊥B1C1

∴ B1C1⊥平面AA1C1C

∴ AC1为AB1在平面AA1C1C的射影

由三垂线定理,下证AC1⊥A1M即可

在矩形AA1C1C中,AC=A1C1=,AA1=CC1=

∴ Rt△A1C1M∽Rt△AA1C1

∴ ∠1=∠2

又∠2+∠3=900

∴ ∠1+∠3=900­

∴ AC1⊥A1M

∴ AB1⊥A1M

评注:利用三垂线定理的关键是找到基本面后找平面的垂线

试题详情

394. 如右图,斜三棱柱ABC-A1B1C1中,A1C1⊥BC1,AB⊥AC,AB=3,AC=2,侧棱与底面成60°角。

(1)求证:AC⊥面ABC1

(2)求证:C1点在平面ABC上的射影H在直线AB上;

(3)求此三棱柱体积的最小值。

解析:(1)由棱柱性质,可知A1C1//AC

       ∵A1C1BC1, 

       ∴ACBC1,又∵ACAB,∴AC平面ABC1

     (2)由(1)知AC平面ABC1,又AC平面ABC,∴平面ABC平面ABC1

        在平面ABC1内,过C1作C1HAB于H,则C1H平面ABC,故点C1在平面ABC上

        的射影H在直线AB上。

     (3)连结HC,由(2)知C1H平面ABC,

        ∴∠C1CH就是侧棱CC1与底面所成的角,

        ∴∠C1CH=60°,C1H=CH·tan60°=

        V棱柱=

        ∵CAAB,∴CH,所以棱柱体积最小值3

试题详情

393. 正四棱锥的一个对角面与一个侧面的面积之比为,求侧面与底面所成的角的大小。

解析:如图,正四棱锥P-ABCD的一个对角面△PAC。设棱锥的底面边长为a,高为h,斜高为h′,底面中心为O,连PO,则PO⊥底面ABCD,∴PO⊥AC,在△PAC中,AC=,PO=h,

     ∴

     在△PBC中,°

     ∴

     ∴h:h′=.

     取BC中点E,连OE,PE,可证∠PEO即为侧面与底面所成两面角的平面角。

     在Rt△POE中,sin∠PEO=

     ∴∠PEO=,即侧面与底面所成的角为.

试题详情

392. 如图,BCD是等腰直角三角形,斜边CD的长等于点P到BC的距离,D是P在平面BCD上的射影.(1)求PB与平面BCD所成角;(2)求BP与平面PCD所成的角

解析:(1)PD⊥平面BCD,∴BD是PB在平面BCD内的射影,∴∠PBD为PB与平面BCD所成角,BD⊥BC,由三垂线定理得BC⊥BD,∴BP=CD,设BC=a,则BD=a,BP=CD=a∴在Rt△BPD中,

cos∠DBP= ∴∠DBP=45°, 即PB与平面BCD所成角为45°.

  (2)过B作BE⊥CD于E,连结PE,PD⊥平面BCD得PD⊥BE,∴BE⊥平面PCD,

∴∠BPE为BP与平面PCD所成的角,在Rt△BEP中,BE=a, BP=a,∴∠BPE=30°  即BP与平面PCD所成角为30°.

试题详情

391. 如图,△ABC为锐角三角形,PA⊥平面ABC,A点在平面PBC上的射影为H,求:H不可能是△PBC的垂心.

解析:连结CH,则CH是AC在平面PBC内的射影,若H为垂心,则CH⊥PB,由三垂线定理得AC⊥PB,又PA⊥平面ABC,∴PA⊥AC,∴AC⊥平面PAB,从而AC⊥AB与△ABC为锐角三

角形矛盾,故H不可能是垂心.

试题详情

410.  点P、Q、R分别在三棱锥A-BCD的三条侧棱上,且PQ∩BC=X,QR∩CD=Z,PR∩BD=Y.求证:X、Y、Z三点共线.

解析: 证明点共线的基本方法是利用公理2,证明这些点是两个平面的公共点.

证明  ∵P、Q、R三点不共线,∴P、Q、R三点可以确定一个平面α.

∵  X∈PQ,PQα,∴X∈α,又X∈BC,BC面BCD,∴X∈平面BCD.

∴  点X是平面α和平面BCD的公共点.同理可证,点Y、Z都是这两个平面的公共点,即点X、Y、Z都在平面α和平面BCD的交线上.

试题详情

409. 若ΔABC所在的平面和ΔA1B1C1所在平面相交,并且直线AA1、BB1、CC1相交于一点O,求证:

(1)AB和A1B1、BC和B1C1、AC和A1C1分别在同一平面内;

(2)如果AB和A1B1、BC和B1C1、AC和A1C1分别相交,那么交点在同一直线上(如图).

(1)证明:∵AA1∩BB1=O,

∴AA1、BB1确定平面BAO,

∵A、A1、B、B1都在平面ABO内,

∴AB平面ABO;A1B1平面ABO.

同理可证,BC和B1C1、AC和A1C1分别在同一平面内.

(2)分析:欲证两直线的交点在一条直线上,可根据公理2,证明这两条直线分别在两个相交平面内,那么,它们的交点就在这两个平面的交线上.

证明:如图,设AB∩A1B1=P;

AC∩A1C1=R;

∴  面ABC∩面A1B1C1=PR.

∵  BC面ABC;B1C1面A1B1C1

且  BC∩B1C1=Q    ∴  Q∈PR,

即  P、R、Q在同一直线上.

试题详情


同步练习册答案