题目列表(包括答案和解析)
328.求证:如果两条平行线中的一条和一个平面相交,那么另一条也和这个平面相交.
已知:a∥b,a∩α=A,求证:b和α相交.
证明:假设bα或b∥α.
若bα,∵b∥a,∴a∥α.
这与a∩α=A矛盾,∴bα不成立.
若b∥α,设过a、b的平面与α交于c.
∵b∥α,∴b∥c,又a∥b ∴a∥c
∴a∥α这与a∩α=A矛盾.∴b∥α不成立.
∴b与α相交.
327. 如图,四边形EFGH为四面体A-BCD的一个截面,若截面为平行四边形,求证:(1)AB∥平面EFGH;(2)CD∥平面EFGH
证明:(1)∵EFGH为平行四边形,∴EF∥HG,
∵HG平面ABD,∴EF∥平面ABD.
∵EF平面ABC,平面ABD∩平面ABC=AB.
∴EF∥AB,∴AB∥平面EFGH.
(2)同理可证:CD∥EH,∴CD∥平面EFGH.
评析:由线线平行线面平行线线平行.
326. 已知正方体ABCD-A′B′C′D′中,面对角线AB′、BC′上分别有两点E、F且B′E=C′F求证:EF∥平面AC.
解析: 如图,欲证EF∥平面AC,可证与平面AC内的一条直线平行,也可以证明EF所在平面与平面AC平行.
证法1 过E、F分别做AB、BC的垂线EM、FN交AB、BC于M、N,连接MN
∵BB′⊥平面AC ∴ BB′⊥AB,BB′⊥BC
∴EM⊥AB,FN⊥BC
∴EM∥FN,∵AB′=BC′,B′E=C′F
∴AE=BF又∠B′AB=∠C′BC=45°
∴RtΔAME≌RtΔBNF
∴EM=FN
∴四边形MNFE是平行四边形
∴EF∥MN又MN平面AC
∴EF∥平面AC
证法2 过E作EG∥AB交BB′于G,连GF
∴=
∵B′E=C′F,B′A=C′B
∴= ∴FG∥B′C′∥BC
又∵EG∩FG=G,AB∩BC=B
∴平面EFG∥平面AC
又EF平面EFG
∴EF∥平面AC
325. S是空间四边形ABCD的对角线BD上任意一点,E、F分别在AD、CD上,且AE∶AD=CF∶CD,BE与AS相交于R,BF与SC相交于Q.求证:EF∥RQ.
证 在ΔADC中,因AE∶AD=CF∶CD,故EF∥AC,而AC平面ACS,故EF∥平面ACS.而RQ=平面ACS∩平面RQEF,故EF∥RQ(线面平行性质定理).
324. 证明:过平面上一点而与这平面的一条平行线平行的直线,在这平面上.
证明 如图,设直线a∥平面α,点A∈α,A∈直线b,b∥a,欲证bα.事实上,∵b∥a,可确定平面β,β与α有公共点A,∴α,B交于过A的直线c,∵a∥α,∴a∥c,从而在β上有三条直线,其中b、c均过点A且都与a平行.于是b、c重合,即bα.
323. 如图,在正四棱锥S-ABCD中,P在SC上,Q在SB上,R在SD上,且SP∶PC=1∶2,SQ∶SB=2∶3,SR∶RD=2∶1.求证:SA∥平面PQR.
解析:根据直线和平面平行的判定定理,必须在平面PQR内找一条直线与AS平行即可.
证:连AC、BD,设交于O,连SO,连RQ交SO于M,取SC中点N,连ON,那么ON∥SA.
∵==
∴RQ∥BD
∴=而=
∴= ∴PM∥ON
∵SA∥ON.∴SA∥PM,PM平面PQR
∴ SA∥平面PQR.
评析:利用平几中的平行线截比例线段定理.
三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.
322. 一直线分别平行于两个相交平面,则这条直线与它们的交线平行.
已知:α∩β=a,l∥α,l∥β.求证:l∥a.
解析:由线面平行推出线线平行,再由线线平行推出线面平行,反复应用线面平行的判定和性质.
证明:过l作平面交α于b.∵l∥α,由性质定理知l∥b.
过l作平面交β于c.∵l∥β,由性质定理知l∥c.
∴ b∥c,显然cβ.∴ b∥β.
又 bα,α∩β=a,∴ b∥a.
又 l∥b.
∴ l∥a.
评注:本题在证明过程中注意文字语言、符号语言,图形语言的转换和使用.
321. 如图,ABCD和ABEF均为平行四边形,M为对角线AC上的一点,N为对角线FB上的一点,且有AM∶FN=AC∶BF,求证:MN∥平面CBE.
解析:欲证MN∥平面CBE,当然还是需要证明MN平行于平面CBE内的一条直线才行.题目上所给的是线段成比例的关系,因此本题必须通过三角形相似,由比例关系的变通,才能达到“线线平行”到“线面平行”的转化.
证:连AN并延长交BE的延长线于P.
∵ BE∥AF,∴ ΔBNP∽ΔFNA.
∴ =,则=.
即 =.
又 =,=,
∴ =.
∴ MN∥CP,CP平面CBE.
∴ MN∥平面CBE.
340. 如图,已知正三棱柱A1B1C1-ABC的底面积等于cm2,D、E分别是侧棱B1B,C1C上的点,且有EC=BC=2DB,试求
(1)四棱锥A-BCDE的底面BCED的面积
(2)四棱锥A-BCED的体积
(3)截面ADE与底面ABC所成二面角的大小
(4)截面ADE的面积
解析: 利用三棱柱的性质及已知条件,(1)、(2)、(4)不难推算,至于(3),可设平面ADE与平面ABC所成二面角为α,观察到ΔADE在底面ABC的射影是ΔABC(∵DB⊥平面ABC,EC⊥平面ABC)应用SΔABC=SΔADE·cosα,可求出α.
解:设ΔABC边长为x,∵SΔABC=x2=.∴x=2,于是EC=BC=2,DB=BC=1,∴SBCED= (2+1)·2=3,作AF⊥BC于F
∴AF⊥平面BCED,VA-BCED=·AF·SBCED,∴VA-BCED=··2·3=
在RtΔABD中,AD2=AB2+DB2=22+12=5;在Rt梯形BCED中,DE2=(CE-DB)2+BC2=5
∴AD=DE=,∴ΔADE是等腰三角形,作DQ⊥AE于Q,则Q为AE的中点
在RtΔACE中,AE2=EC2+AC2=8,DQ2=AD2-AQ2=()2-()2=3
∴AE=,DQ=,SΔADE=·AE·DQ=
设截面ADE与底面ABC所成二面角大小为α,D、E分别在底面的射影为B、C,∴ΔABC的面积=ΔADE面积×cosα
即=cosα,cosα=,∴α=45°
答 (1)SBCED=3cm2,(2)VA-BCED=cm2,(3)截面ADE与底面ABC成45°的二面角,(4)SΔADE=cm2
339. 如图,已知正三棱柱ABC-A1B1C1的各棱长都为a,D为CC1的中点.
(1)求证:A1B⊥平面AB1D.
(2)求平面A1BD与平面ABC所成二面角的度数.
解析:这虽是一个棱柱,但所要论证的线面关系以及二面角的度数,都还是要利用直线和平面中的有关知识.
解 (1)∵正三棱柱的各棱长都相等,
∴侧面ABB1A1是正方形.
∴A1B⊥AB1.连DE,
∵ΔBCD≌ΔA1C1D,
∴BD=A1D,而E为A1B的中点,
A1B⊥DE.∴A1B⊥平面AB1D.
(2)延长A1D与AC的延长线交于S,连BS,则BS为平面A1BD和平面ABC所成二面角的公共棱.
∵DC∥A1A,且D为CC1的中点,∴AC=CS.
又AB=BC=CA=CS,∴∠ABS=90°.又AB是A1B在底面上的射影,由三垂线定理得A1B⊥BS.
∴∠A1BA就是二面角A1-BS-A的平面角.
∵∠A1BA=45°,
∴平面A1BD和平面ABC所成的二面角为45°.
评注:本题(2)的关键是根据公理二求平面A1BD和平面ABC的交线,在论证AB⊥BS时,用到了直角三角形斜边上的中线性质定理的逆定理.当然(2)还可以用S射=S·cosθ来解θ.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com