题目列表(包括答案和解析)

 0  55325  55333  55339  55343  55349  55351  55355  55361  55363  55369  55375  55379  55381  55385  55391  55393  55399  55403  55405  55409  55411  55415  55417  55419  55420  55421  55423  55424  55425  55427  55429  55433  55435  55439  55441  55445  55451  55453  55459  55463  55465  55469  55475  55481  55483  55489  55493  55495  55501  55505  55511  55519  447348 

17.(2009重庆卷文)12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为(   )

A.     B.      C.      D.

[答案]B

解析因为将12个组分成4个组的分法有种,而3个强队恰好被分在同一组分法有,故个强队恰好被分在同一组的概率为

试题详情

16.(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是

A. 360     B. 188     C. 216    D. 96 

[考点定位]本小题考查排列综合问题,基础题。

解析:6位同学站成一排,3位女生中有且只有两位女生相邻的排法有种,其中男生甲站两端的有,符合条件的排法故共有188

解析2:由题意有,选B。

试题详情

15.(2009湖南卷理)从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位                          [ C]    

A  85       B 56       C 49       D 28 

[答案]:C

[解析]解析由条件可分为两类:一类是甲乙两人只去一个的选法有:,另一类是甲乙都去的选法有=7,所以共有42+7=49,即选C项。

试题详情

14.(2009陕西卷文)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为 

(A)432       (B)288      (C) 216     (D)108网

答案:C.

解析:首先个位数字必须为奇数,从1,3,5,7四个中选择一个有种,再丛剩余3个奇数中选择一个,从2,4,6三个偶数中选择两个,进行十位,百位,千位三个位置的全排。则共有故选C.    

试题详情

13.(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是

  A.  60        B. 48        C. 42         D. 36

[答案]B

[解析]解法一、从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12×4=48种不同排法。

解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:

第一类:女生A、B在两端,男生甲、乙在中间,共有=24种排法;

第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有=12种排法

第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。

此时共有=12种排法

   三类之和为24+12+12=48种。

试题详情

12.(2009全国卷Ⅰ文)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有

(A)150种  (B)180种   (C)300种   (D)345种

[解析]本小题考查分类计算原理、分步计数原理、组合等问题,基础题。

解:由题共有,故选择D。

试题详情

11.(2009湖南卷文)某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为[ B ]

A.14        B.16         C.20         D.48

解:由间接法得,故选B.

试题详情

10.(2009湖北卷文)从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有

A.120种     B.96种      C.60种      D.48种

[答案]C

[解析]5人中选4人则有种,周五一人有种,周六两人则有,周日则有种,故共有××=60种,故选C

试题详情

9.(2009辽宁卷理)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有

(A)70种   (B) 80种   (C) 100种   (D)140种 

[解析]直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C41=10×4=40种,共计70种

     间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84-10-4=70种.

[答案]A

试题详情

8. (2009全国卷Ⅱ理)甲、乙两人从4门课程中各选修2门。则甲、乙所选的课程中至少有1门不相同的选法共有

    A. 6种   B. 12种   C. 30种    D. 36种

解:用间接法即可.种. 故选C

试题详情


同步练习册答案